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Shape Formation in Homogeneous Swarms
Using Local Task Swapping

Hanlin Wang and Michael Rubenstein

Abstract—The task of shape formation in robot swarms can often
be reduced to two tasks—assigning goal locations to each robot and
creating a collision-free path to that goal. In this article, we present a
distributed algorithm that solves these tasks concurrently, enabling
a swarm of robots to move and form a shape quickly and without
collision. A user can specify a desired shape as an image, send that
to a swarm of identically programmed robots, and the swarm will
move all robots to goal locations within the desired shape. This
algorithm was executed on a swarm of up to 1024 simulated robots
and a swarm of 100 real robots, showing that it reliably converges
to all robots forming the shape.

Index Terms—Distributed robot systems, multirobot systems,
swarms.

I. INTRODUCTION

SHAPE formation is one of the fundamental problems in
swarm systems. The task is often framed as moving a set

of robots, which are initially located randomly in space, into a
given arbitrary target formation, which is often specified by a set
of locations. It plays an important role in a wide variety of appli-
cations, such as modular robots [1], warehouse management [2],
entertainment applications [3], and more [4].

In general, the complete shape formation problem can be
divided into two subproblems—assignment of robots’ locations
in shape and formation control.

The assignment subproblem tries to divide the goal locations
among the individuals, often in an optimal way, such as minimiz-
ing the total distance traveled by the swarm. This problem has
been well studied and there are several algorithms which can find
the optimal assignment, including the Hungarian algorithm [5],
auction algorithms [6], [7], and iterative methods [8], [9]. Recent
work shows that some certain assignments which minimize a
cost of interest can help to reduce the computational complexity
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Fig. 1. Still images from a 100 robot shape formation experiment. The robots
start in a random configuration, and move to form the desired “N” shape. Once
this shape is formed, they then form the shape “U.” The entire sequence is fully
autonomous using the distributed algorithm described in this article. (a) T = 0 s.
(b) T = 20 s. (c) T = 64 s. (d) T = 72 s. (e) T = 80 s. (f) T = 112 s.

of path planning problems. One typical cost of interest used is the
sum of the distance traveled by all agents [10]–[12], and the other
cost of interests are the sum of the square distance traveled [13]
and the maximal distance traveled [14], which help to minimize
the total time elapsed. In these methods, the calculation for
the assignment is handled by a centralized coordinator. These
centralized strategies can deliver a solution to the assignment
problem, but do not easily scale to large numbers of robots,
present a single point of failure, and do not easily adapt to
situations where the number of robots is unknown or can vary.

Unsurprisingly, the distributed assignment methods, on the
other hand, can often scale well to the number of robots, and can
be more robust to failures [15] and varying numbers of robots.
Past efforts try to solve the distributed assignment problem by
following an incremental distributed refinement process [16],
[17]. Here, the order how agents explore each goal has significant
effect on convergence rate. In [16], the agents follow a preas-
signed order which assures that a correct assignment of agents

1552-3098 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northwestern University. Downloaded on February 20,2020 at 00:14:30 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-3836-403X
https://orcid.org/0000-0002-1289-4211
mailto:h.w@u.northwestern.edu
mailto:rubenstein@northwestern.edu
https://ieeexplore.ieee.org
https://ieeexplore.ieee.org


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON ROBOTICS

to tasks is always achieved after exploring at most a polynomial
number of assignments. In [17], authors obtained an efficient
convergence by forcing agents to follow a certain path. This path
is collision-free when agents have infinitely small size, but when
agents have finite size, the path cannot provide a collision-free
guarantee.

After determining the role in shape, each agent then needs
to move cooperatively to form the desired shape. In the past,
many methods to produce the formation have been proposed.
According to the types of actively controlled variables [18],
such as agent’s position or distances to the neighbors, formation
control methods can be categorized into local measurement-
based methods [19]–[31] and position-based methods [10]–[14],
[32]–[50].

In local measurement-based methods [19], the agents form
the desired shape by actively controlling its distance [20]–[24],
bearing [25], or both [26]–[30], relative to its neighbors. This
type of methods only require the use of relative measurements;
therefore can be employed in the GPS-denied environments, e.g.,
indoor environments. For local measurement-based methods,
the challenge is how to obtain the global stabilization to the
desired formation using only peer-to-peer information [26].

Some methods achieve the global stabilization by relying on
the leader agents [24], [28]–[30]. In these methods, the leader
tracks its desired trajectory, and the nonleader agents are tasked
to maintain certain graph structures rooted from the leader
agent where each vertex characterizes an agent and each edge
characterizes an interagent measurements, such as distance or
relative position. These methods allow the swarm to stabilize
to a formation that is even dynamically moving, but require
an additional leader selection phase to assign a role (leader or
nonleader) to each agent.

The methods proposed in [26] and [27] are leaderless, these
methods enable a group of agents to reliably produce a rigid
shape, using the relative positions of agent’s neighbors. Never-
theless, in order to achieve global stability, the method proposed
in [27] needs the communication graph among agents to be
complete, and the method proposed in [26] requires the desired
formation to satisfy some specific topological conditions.

While local measurement-based methods permit operations
in GPS-denied environments, they often require a centralized
coordinator, or the use of a complete communication network,
to initially assign each robot a position in final shape. Moreover,
without any additional mechanism, it often fails to provide an
absolute collision avoidance guarantee when agents have finite
size.

To the contrary, in position-based methods, the desired for-
mation is achieved by actively controlling the agents’ positions.
This type of methods require that each agent is able to measure
their own positions with respect to a global coordinate system.
Here, the challenge is how to efficiently generate collision-free
trajectories where agents can achieve the desired formation by
moving to goal locations.

Some previous work tackled the problem in a discrete set-
ting [32]–[35], while others solved the problem in a continuous
setting [36]–[39]. As expected, these centralized methods suffer
from the curse of dimensionality (because the dimension of

swarm’s joint configuration space increase exponentially over
swarm size), hence often cannot easily scale to large-scale
swarms, such as a swarm of over 1000 agents.

An alternative method is to use an artificial potential function
to guide agents to the desired formations using gradient descent.
Some authors make use of gradient descent to drive agents to
goals [46], [47], and some use the potential function to modify
current trajectories locally to prevent collision and maintain
connectivity [48]. The drawbacks for this kind of method are
that it may take a long time to converge and there is no guarantee
provided that they can form the desired shape [11], [49].

Distributed multiagent path planning is a well studied topic.
Some methods are based on local measurements, either relative
velocities [40]–[42] or relative positions [43], but none of these
methods can provide a deadlock-free guarantee, agents can get
stuck in a situation where no action can be made for further
progress, yet the shape is incomplete. In fact, in our review
of distributed path planners [31], [40]–[43], [45], none of the
methods can provide a deadlock-free guarantee and absolute
collision-free guarantee at the same time. This is also suggested
in [43], which also claims that no deadlock-free distributed
path planner that is with absolute collision-free guarantee ex-
ists. Other approaches make use of the communication among
agents, but in order to guarantee the correctness of the method,
require either a lossless fully connected network [44] or precise
velocity control [11], which can be difficult to guarantee when
implemented in a physical system. In [45], authors presented a
distributed collision avoidance strategy which can resolve some
certain types of deadlocks using local communication only, but
the method cannot resolve all types of deadlocks. A distributed
receding horizon control based method is proposed in [31],
this method requires only the use of relative sensing in robot’s
local coordinate frames, and is able to provide mathematical
guarantees on the achievement of the rendezvous, however, it
has not been shown that the method can provide collision-free
guarantee and absolute deadlock-free guarantee at the same time.

In this article, we present a fully distributed shape formation
algorithm where each agent is identically programmed and takes
the same input, a set of goal points that describes the desired
shape. Each agent will use local communication to actively
refine the goal assignment and control its position in a distributed
fashion. To the best of our knowledge, and supported by [43],
our algorithm is the first provably correct fully distributed shape
formation algorithm that can also provide absolute collision-free
and deadlock-free guarantees, requiring only the use of local
communication. Moreover, the physical experiments and simu-
lations presented show that our algorithm is robust to real-world
nonidealities, such as communication errors, sensing errors, and
imperfect robot motion.

II. PROBLEM DEFINITION

In this article, we propose an algorithm that when given a
set of desired target points (which are described by a set of
nodes on a grid), moves a swarm of mobile agents so that each
agent is located at a target position, and no target position has
more than one agent. For each agent, the set of target positions
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are known a priori, moreover, all the agents agree on the same
global reference frame. This algorithm must distribute the target
positions among the agents and then drive the agents to their
corresponding target position without collision. The system is
distributed, agents are identically programmed, and act based
on local information gathered through communication. In this
section, we will formally state the problem and introduce the
notations used in this article.

A. Agent Model

Agents are modeled as two-dimensional omnidirectional
robots equipped with position and orientation sensing, i.e., each
agent can measure its own position and orientation in a global
coordinate system at all times. Each agent is treated as a circle
with a finite radius r and can move in any direction at speed vm,
or stop. Additionally, each agent is able to communicate with
any agent lying within its communication range R ≥ 4

√
2r. To

simplify the analysis and description, we assume the following.
a) Each agent has the same clock frequency fclock.
b) Each agent is able to constantly transmit messages to the

neighbors in communication range at a fixed rate fcomm.
c) The local interagent communication is lossless.
d) Each agent has the same vm.
e) The communication latency is negligible.
Note that here we do not have any assumption on the phase of

the agent’s clock relative to each other, they can be asynchronous
in phase. When the algorithm is implemented in the real world,
these assumptions can be relaxed to accommodate the real-world
nonidealities, see Section V-B3 for detailed discussion.

B. Notations

For the sake of describing our algorithm and formulating the
problem, we introduce the notations as follows.

Let A = {a1, a2, . . ., an} be a set of agents, where each
agent ai ∈ A has a position pai

(t) ∈ R2 at time t. For all
p ∈ R2, px, py denote p’s x and y components, respectively.
|| · || denotes the Euclidean norm on R2 space and � denotes
the lexicographic order on R2 space, namely, p1 � p2 if and
only if:px1 > px2 , orpx1 = px2 andpy1 > py2 . LetQ = {q1, . . ., qm}
be a set of distinct target locations, where qi ∈ R2, we assume
that ∀qi, qj ∈ Q, ||qi − qj || ≥ 2

√
2r, i.e, in the desired shape

no pair of robots collide with each other. Moreover, we use
Tai

(t) ∈ Q to denote ai’s assigned target position at time t.
We assume that every agent has the same communication range
R, and Nai

(t) ⊂ A denotes the set such that at time t, ∀aj �= ai,
||pai

(t)− paj
(t)|| ≤ R if and only if aj ∈ Nai

(t), in the other
words, Nai

(t) is the set of agents that are able to communicate
with ai at time t.

C. Problem Formulation

Our task is to design an algorithm to move a swarm of n
identical robots, represented by setA, from their initial positions
to an arbitrary connected target formation, represented by set Q.
To simplify the problem, we assume |Q| = |A|. The algorithm
should be deadlock-free and collision-free, i.e.,

Fig. 2. Illustration of the grid discretization of space and possible collision
cases. The intersections of grey dashed lines represent the feasible waypoints,
and agents travel on the edges between waypoints. Each agent’s position is shown
with a colored circle and its goal point is shown with a square of the same color.
Moreover, we label each agent with a unique number and use the arrow to show
agent’s incentive for next step. (left) A valid trajectory for a single agent to move
to its goal. The trajectory is shown as a sequence of arrows. (middle) An edge
collision, where blue and green robots both intend to travel on the edge in black,
in opposite directions. Here neither can make progress without collision. (right)
Collision happens on a waypoint, where the blue and green robots try to move
to the same waypoint at the same time, physically colliding.

� ∃tmax > 0 such that at any time t > tmax, it holds that:∀ai ∈
A, pai(t) = Tai

(t), moreover ∀aj �= ai, Taj
(t) �= Tai

(t),
� ∀t≥0, for any two agents ai �=aj , ||pai

(t)−paj
(t)||≥2r.

III. APPROACH

To form the goal shape, each agent needs to pick a valid
goal, and then move on a collision-free and deadlock-free path
toward that goal without any centralized coordination. For this
task, two subproblems arise. One of them is solving duplicated
assignments, which is caused by the limited sensing ability of the
agents. Agents have limited communication range so they have
to determine their targets based only on the local information.
This makes it possible that there exist multiple robots holding the
same target. The other subproblem is planning each robot’s mo-
tion based on local information so as to generate collision-free
and deadlock-free paths toward the goals. Additionally, if every
agent’s target is unique, the motion planner should guarantee
that each agent will reach the target in a finite amount of time.

In our method, the task is handled by two modules—the new
goal selector, which is used to pick a valid goal, and the motion
planner, which is used to plan the agent’s motion. Each agent
uses the motion planner to move to its current goal, and if it
encounters another agent holding the same goal, it uses the new
goal selector to pick another goal. A detailed description is
shown as Algorithm 1. Note that this algorithm runs on each
agent of the swarm.

A. Motion Planning

To generate a collision-free path, we first convert the contin-
uous environment into a discrete grid, as shown in Fig. 2. While
this grid representation of the environment will make agent’s
motion less efficient, it helps to reduce the computational cost
of motion planning. Note that the grid here is the same grid goal
points are located on. Let l be the length of the grid edge, where
the constraint that 2

√
2r ≤ l ≤ R

2 is enforced for the purpose of
collision avoidance. Furthermore, we assume that there are no
obstacles located in the environment. With this representation,
each agent’s path is given by a sequence of the waypoints, i.e.,
the nodes of the grids.

For every two adjacent waypoints, the motion controller en-
forces that the robots travel on the line segment between them.
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Fig. 3. Illustration of possible cases where an agent may change its goal. All
the information is encoded in the same way as Fig. 2. (left) For any pair of agents
located within each other’s communication range, if goal swap can help them to
reduce the pairwise total distance traveled (in term of Manhattan distance), then
goal swap occurs. (middle) If the goal swap does not affect the total pairwise
travel distance, these two agents randomly decide whether to swap. (right) If
both agents hold the same goal, one of them will run the new goal selector
algorithm to select a new goal from Q.

The motion controller plans every robot’s motion, such that the
following constrains are satisfied.

Constraint III-A.1: At any time t, no agent moves to the
waypoint that is currently occupied by the other, and no pair
of agents move toward the same waypoint at the same time.

Constraint III-A.2: At any time t, no pair of agents travel on
the same edge in opposite directions.

For each agent located at any waypoint, there are five possible
actions—move north, east, south, west, and wait. Agents
should choose the action that greedily reduces the Manhattan
distance to its goal point. Once the agent determines its next
action, and if this action is not wait, it first uses commu-
nication to check whether the waypoint is occupied by any
other agent. If it is occupied, the agent executes wait and
continues using communication to check the availability of the
waypoint (Algorithm 2, Lines 26–27). If there is no other agent
occupying this waypoint, the agent then starts to check if any
other agent wants to move to the same waypoint as it does. If
there are multiple robots intending to go to the same waypoint
(x, y) at the same time t, then the robot ai whose current
position pai(t) is the lexically largest will go first (Algorithm 2,
Lines 28–29).

As the agent moves toward its goal, it continually tries to
improve its goal assignment, changing its goal based on local
information. When it senses a neighbor with whom a swapped
goal would result in a reduced pairwise traveled distance (in
terms of Manhattan distance), it swaps goals with that neighbor
(Algorithm 4, Lines 11–15). If swapping goals with a neighbor
does not change the pairwise distance traveled, they swap goals
with a probability 0 < β < 1 (Algorithm 4, Lines 16–21). When
a goal conflict is sensed, i.e., a neighbor is seen that is holding
the same goal point, one of the agents picks a new goal from Q
to eliminate the duplicated goal (Algorithm 4, Lines 3–10). An
illustration of the cases in which an agent may change its goal
are shown in Fig. 3.

It is possible that multiple agents (more than two agents)
intend to swap the goals at the same time, for example, at time t,

ai intends to swap the goal with aj while aj intends to swap the
goal with the third agent ak. In our implementation, the pairwise
goal swap is achieved by a 2-way handshake (Algorithm 4,
Lines 12 and 18). Only the pair of who successfully handshake
with each other can swap the goal. To be specific, when agent
ai intends to swap the goal with aj , if paj

(t) � pai
(t), then

it will take the role of client in this handshake, otherwise if
pai

(t) � paj
(t), ai will act as server in the handshake. A client

agent ai will send a handshake request to its intended goal swap
peer aj , which is a handshake server since paj

(t) � pai
(t),

and then wait for the acknowledgement (ACK) from this server
agent aj for certain amount of time. On the other hand, a server
agent aj will wait for the handshake request from its intended
goal swap peer ai for certain amount of time, which is a client
agent since paj

(t) � pai
(t), and send back an ACK to ai after

receiving the handshake request from ai. Note that it is possible
that a server agent aj receives the handshake requests from other
agents that is not its intended goal swap peer. When this happens,
it will answer the requests from these agents with a negative
ACK (or does not answer these requests at all so as to trigger
the handshake timeout). The client agent ai will update its goal
only after receiving the ACK from the intended goal peer aj ,
and the server agent aj will update its goal after receiving the
handshake request from its intended goal swap peer ai.

B. New Goal Selecting

As we want each agent to have a unique goal in the end, the
algorithm needs to eliminate any duplication in the assigned
goals. For the new goal selector algorithm, we desire the swarm
to have as many different goals assigned as possible. When the
total number of assigned goals is equal to the size of the swarm,
no pair of agents will have the same goal. This implies that the
new goal selector should keep the number of assigned goals
growing. Therefore, every time a new goal is selected, the total
number of assigned goal points should be nondecreasing.

1) Random Selector: A simple new goal selector would be a
random selector. For every pair of agents ai, aj that detect that
they hold the same goal, if paj

(t) � pai
(t), where� denotes the

lexical order on R2 space, then ai randomly picks a new goal
from the set Q.

While the random selector can guarantee the process to be al-
most surely convergent, the probability of picking an unassigned
goal will decay over the number of assigned goals, leading to
a relatively long convergence time. We therefore introduce a
heuristic to speed convergence.

2) Gradient-Based Selector: The gradient algorithm, which
is a well-known collective behavior, also known as hop-count
algorithm [51], [52], can be adapted to improve goal selection.
It is a simple algorithm that involves two agent roles, the com-
mon agent and the anchoring agent, and both roles transmit
a single message containing a position qu and a hop-count h.
Each common agent listens to messages from its neighbors in
communication range R, finds the message with the lowest hop-
count received, (qxu, q

y
u, hop), and then transmits the message

(qxu, q
y
u, hop+ 1) (Algorithm 2, Lines 17–19).
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Fig. 4. Example of agents using gradient-based selector to update their goals.
Goal positions are shown as a colored square, agent positions are shown as a
circle whose color matches its current goal. Agents are labeled with its index
i, hop-count value hop, and candidate goal qu color (r-red, b-blue, g-green),
respectively. For this example, we assume that each agent’s communication
range is one grid length. Initially, in frame 1, the goal T , for agents a1 and a3 is
blue, and a2 is red. In frame 2, agents a1 and a3 move toward their goal, with
a3 arriving at its goal. In frame 3, the hop-count is updated for agents and a1
continues toward its current goal. In frame 4, agent a1 sees a3 with the same
goal, and since a3 � a1, a1 changes goals, choosing the goal indicated by the
hop-count message.

The basic hop-count algorithm from [51] and [52] can be
modified in the following way to allow for better goal selection.
An agent will take on the anchoring role when it is one grid length
away from an unassigned goal point (qxu, q

y
u) (by “unassigned

goal” we mean the goal that is not assigned to any of the
agent’s neighbors in communication range), and transmit the
message (qxu, q

y
u, 0) (Algorithm 2, Lines 20–24). An anchoring

agent will become a common agent when it no longer detects
a unassigned goal that is one grid length away. Every agent
ai keeps the latest goal point (qxu, q

y
u) it transmitted as the

candidate goal qu. When ai detects that there is another agent
aj holding the same goal and paj

(t) � pai
(t), it then uses the

current candidate goal qu to update its goal Tai
(t) (Algorithm 4,

Lines 3–10).
This gradient-based selector helps to prevent an agent from

selecting a goal that is already occupied, while also propagating
information about valid goals throughout the entire swarm. This
helps increase the possibility (compared to random goal selector)
that the new goal generated from “new goal selector” is valid,
i.e., the goal has not been occupied by other agents yet. See
Fig. 4 for a graphical illustration.

In addition, the swarm can also use the gradient hop-count to
detect whether the shape is completed. If the shape is completely
formed, there will be no anchor nodes in the swarm, so the
gradient value of each agent will increase temporally. If any
agent holds a gradient value larger than the number of agents,
then the agent knows there are no anchor nodes, and therefore
the shape is completed. Once any agent detects that the shape
is complete, it will send a message which propagates across the
entire swarm telling every other agent that the shape is complete.

C. Implementation

In this section, we describe the implementation of shape
formation algorithm using gradient-based selector in detail.
The algorithm consists of three components—main component,
broadcast component, and goal manager. The main component
coordinates agent’s motion based on the information coming
from its neighbors in communication range so as to avoid col-
lision; the broadcast component constantly transmits messages
to neighbors at a fixed frequency fcomm, and the neighbors in
communication range will use this information to coordinate

their traffic; the goal manager refines agent’s assigned goal
so as to eliminate the duplicated assignment and resolve the
deadlocks. These three components can be implemented using
three separate threads running on each agent that communicate
through shared memory. The sketches of these three modules
are shown in Algorithms 2–4. Note that all the variables are
thread-public.

1) Main Component: In main component, the agent has two
tasks—use the messages from its neighbor to plan its motion
(Algorithm 2, Lines 25–29), and perform the gradient algorithm
so as to help to propagate the information about unassigned goal
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through the swarm (Algorithm 2, Lines 15–24). The variables
and system calls that are used in this component are as follows:
� hop: Agent’s current hop-count value;
� qu: Agent’s candidate goal;
� T : Agent’s current goal, i.e., the goal that the agent is

moving toward;
� wp: The waypoint that agent is claiming, i.e., the waypoint

that agent is currently moving to or staying at;
� p: The agent’s position;
� next_step: Agent’s next waypoint;
� Δt: The amount of time such that: If the agent tries to

plan its motion at time t, then it will use all the messages
received between t−Δt and t to do the calculation;

� clock(): The system call that returns the time elapsed since
the program started;

� last_check: The variable to record the time when the agent
arrived at current waypoint;

� surroundings: The set of four waypoints that are one grid
length away from current waypoint;

� msg_buff: The set of messages that are received in the last
Δt amount of time;

� wait_flag: The flag variable that helps agent to check the
potential collisions, specifically, if wait_flag is 0, then agent
can move to the next waypoint; otherwise if wait_flag is 1,
then the agent needs to stay at the current waypoint.

Recall that the agents’ clocks could be asynchronized in
phase. In order to avoid collisions, we enforce the agent to move
in a “listen-think-walk” manner—namely, before moving from
one waypoint wpa to the other waypoint wpb, the agent will
wait at wpa long enough, more than Δt amount of time to be
specific, so as to collect the neighbor’s information and broadcast
its information to the neighbors. Moreover, when the agent waits

at waypoint wpa, it keeps using the messages received in last
Δt amount of time to determine whether it is safe to move to
the wpb. The collision-free guarantees of this traffic scheduling
strategy is shown in Section IV-A.

2) Goal Manager: In goal manager component, when agent
receives a message from its neighbor, the agent will first check
that if this neighbor are holding the same goal point as it does,
if so, then the one whose current position is lexically smaller
will change its goal (Algorithm 4, Lines 3–10). After this, the
agent will then check whether the conditions (Algorithm 4,
Lines 11, 16) for goal swap are triggered, if so, then it tries
to execute the 2-way handshake with the intended agent, and
if the 2-way handshake succeeds, the agents then updates their
goals accordingly.

Note that this thread is executed concurrently with the main
component (Algorithm 2), as a result, when agent’s goal changes
in this thread (Algorithm 4, Lines 6, 9, 14, 20), Algorithm 2
(Lines 11–14) may change the agent’s next _step, therefore,
in order to avoid the physical collision that is incurred by the
concurrency, right after changing the goal in Algorithm 4, the
agent will reset the timer for the safety checking (Algorithm 4,
Lines 7, 10, 15, 21).

IV. THEORETICAL RESULTS

A. Safety

In this section, we show that if the assumptions proposed in
Section II-A are satisfied, then our algorithm is safe, i.e., the
algorithm is collision-free.

Recall that as shown in Section III-A, to provide collision-
free guarantee, the implementation of motion planner should
satisfy Constraints III-A.1 and III-A.2. First, we show that our
implementation satisfies Constraint III-A.1.

Lemma IV-A.1: Let wpai
(t) be the waypoint that agent ai

is claiming at time t. If agent ai changes the wpai
from

wp0ai
to wp1ai

at time t∗, then there is no agent aj such that
wpaj

(t∗) = wp1ai
.

Proof: Lemma IV-A.1 suggests that the algorithm can guar-
antee that when an agent changes the waypoint it is moving to,
there is no other agent moving to this waypoint, or staying at
this waypoint, at the same time. We prove Lemma IV-A.1 by
contradiction. Let Δt be 2

fcomm
, according to the Algorithm 2, in

order to allow agent ai to change wpai
from wp0ai

to wp1ai
at

time t∗, the following conditions must hold.
� Condition 1: For each message msg that aj received be-

tween t∗ −Δt and t∗, msg should not trigger the two
conditions stated in Algorithm 2, Lines 26, 28.

� Condition 2: For all the times t ∈ (t∗ −Δt, t∗], wpai
(t) =

wp0ai
, as ai needs to wait at wp0ai

for more than Δt
amount of time before changing wpai

(Algorithm 2,
Line 30).

For any other agent aj �= ai, wp1aj
denotes the wpaj

(t∗) and
wp0aj

denotes the waypoint that aj is claiming prior moving to
wp1aj

, moreover, we use t0→1
j to denote the time that aj changes

wpaj
from wp0aj

to wp1aj
. Suppose that there is an agent aj such
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that wp1aj
= wp1ai

. We here exhaustively outline two possible
cases.

Case 1: t0→1
j ≤ t∗ − 0.5Δt: This case suggests that for all the

times t ∈ [t∗ − 0.5Δt, t∗], wpaj
(t) = wp1ai

. On the other hand,
since aj transmits the messages at fixed frequency fcomm, during
time span [t∗ − 0.5Δt, t∗], it will transmit at least one message to
the neighbors, as a result, ai will receive a message that triggers
Algorithm 2, Line 26 during [t∗ − 0.5Δt, t∗], which contradicts
to Condition 1.

Case 2: t∗ − 0.5Δt < t0→1
j ≤ t∗: By Condition 2, in this case

we have: For all the times t ∈ (t∗ −Δt, t∗ − 0.5Δt], it holds
that wpaj

(t) = wp0aj
and wpai

(t) = wp0ai
. Since we assume

wp1ai
= wp1aj

, we can conclude that these two agents intend to go
the the same waypoint, i.e., wp1ai

, during (t∗ −Δt, t∗ − 0.5Δt].
On the other hand, the period of time between t∗ −Δt and
t∗ − 0.5Δt is long enough that ai, aj will have communicated
next_step to each other. Given the fact that aj changeswpaj

after
receiving ai’s next_step, one can conclude that aj has higher
priority to move to thewp1aj

, as a result, the message transmitted
by aj during (t∗ −Δt, t∗ − 0.5Δt] will trigger Algorithm 2,
Line 28 on ai, which contradicts the Condition 1, completing
the proof. �

Theorem IV-A.1: At time t = 0, if each agent starts with a
unique waypoint, then for any time t > 0, Constraint III-A.1
will be satisfied.

Proof: If each agent starts with a unique waypoint,
then Lemma IV-A.1 suffices to show that Theorem IV-A.1
holds. �

Next, we show that our implementation satisfied the
Constraint III-A.2 as well.

Theorem IV-A.2: At time t = 0, if each agent starts with a
unique waypoint, then for any time t > 0, Constraint III-A.2
will be satisfied.

Proof: We prove Theorem IV-A.2 by contradiction. Suppose
that at time t∗, there are two agents ai, aj traveling on the
edge connecting waypoint wp0, wp1 in the opposite direction.
Without loss of the generality, we assume ai is moving from
wp0 to wp1 and aj is moving from wp1 to wp0. Let t0→1

i be
the time that ai changes wpai

from wp0 to wp1 and t1→0
j be

the time that aj changes wpaj
from wp1 to wp0, we have two

cases.
Case 1: t0→1

i �= t1→0
j : This case contradicts to Lemma IV-A.1,

as the agent who changes its wp later will change its wp to a
waypoint that is already claimed by the other.

Case 2: t0→1
i = t1→0

j : By Algorithm 2, Line 30, before t0→1
i ,

there is sufficient time for each of these two agent to sense that
its next_step is claimed by the other, as a result, Algorithm 2,
Line 26 will be triggered, and the agents’ wp s will not change,
where contradiction occurs. �

B. Almost Sure Convergence

In this section, we show that if the new goal selector can
pick a valid new goal point with nonzero probability, then the
algorithm can enable the swarm to successfully form the desired
shape with probability one, regardless of the swarm’s initial
configuration.

To prove the convergence of the algorithm, for every time step
t, we construct the following objective functions:

J1(t) =

|A|∑

i=1

di(t)

J2(t) = |A| −
|Q|∑

i=1

ei(t).

In which, di(t) is the Manhattan distance from agent ai’s
current position to its current goal at time t, i.e., the number
of edges to be traversed in the grid. Moreover, for each goal
position qi, we define ei(t) as follows:

ei(t) =

{
1, if at time t, ∃ j s.t. Taj

(t) = qi

0, otherwise.

One can see that these two objective functions will both equal
zero only if all agents successfully arrive at a unique goal.
Therefore, it is sufficient to show that our method can always
drive the swarm to the desired final configuration by proving our
method can make both J1 and J2 converge to zero, regardless
of the initialization.

Proposition IV-B.1: Let Pr{·} be the probability that event ·
will occur, for any function J(t) ∈ Z≥0, it will almost surely
converge to zero if:
� ∃C ∈ Z≥0, s.t. ∀t, J(t) ≤ C;
� ∀ t1 ≤ t2, J(t1) ≥ J(t2);
� ∃τ, ε > 0, s.t. ∀t, Pr{J(t+τ)≤J(t)− 1|J(t) �= 0}≥ε
Proof: Proposition IV-B.1 suggests that: if a bounded non-

negative objective is nonincreasing and will strictly decrease
with a nonzero probability when it is not zero, then it will
almost surely converge to zero. Without loss of generality, let
J(t0) = C, we have

lim
n→∞Pr{J(t0 + nτ) = 0} ≥ lim

n→∞

n∑

k=C

(
n

k

)
(ε)k(1− ε)n − k

Hence, limn→∞ Pr{J(t0 + nτ) = 0} = 1 �
Next, to prove that both J1 and J2 can almost surely converge

to zero, we show that both these two functions satisfy all three
conditions proposed in Proposition IV-B.1.

Lemma IV-B.1: Both J1 and J2 are bounded by a finite
constant.

Proof: At any time t, we can always find a minimal rectangle
that covers all agent positions and goal positions. Let cxt, cyt
be the length of the rectangle’s edge in the x- and y-direction,
respectively, and let ct be cxt + cyt. Using the fact that each
agent moves to its goal point greedily, we have∀t1, t2, if t1 ≤ t2,
then ct1 ≥ ct2 , in the other words ∀t, ct ≤ ct0. Note that ct is
always larger than or equal to the Manhattan distance between
any pair of points in the rectangle at time t, therefore, we have
J1 ≤ |A|ct0. On the other hand, since at least one goal will be
assigned to the swarm, we have J2 ≤ |A| − 1, which completes
the proof. �

Lemma IV-B.2: J2 is monotonically decreasing, moreover,
J1 is monotonically decreasing if J2 equals zero.
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Proof: Recall the way that the new goal selector works—if
two agents realize that they are holding the same goal, then only
one of them will select a new goal while the other agent will
keep holding the current goal. As a result, no matter whether the
new goal is valid or not, J2 will never increase.

On the other hand, if J2 = 0, then the new goal selector will
no longer be triggered, so the robots will move greedily toward
their goals. Thus, when J2 = 0, J1 will never increase. �

To describe swarm’s traffic condition, at every time step t,
we construct a directed graph Gt = (V, Et), in which V = A and
Et = {(vi, vj)} as its edge set, where (vi, vj) ∈ Et if aj occupies
ai’s next waypoint at time t. By definition, each vertex on Gt

essentially characterizes an agent, therefore, in the rest of the
section we use the notation ai and vi interchangeably. For the
sake of the description, at time t we call agent aj is agent ai’s
successor, or ai is aj’s predecessor, if (vi, vj) ∈ Et. Addition-
ally, we call those agent(s) ai whose out degree deg+(ai) = 0
the head agent(s), in the other words, a head agent is an agent
that is not blocked by any other agent.

Lemma IV-B.3: If (vi, vj) ∈ Et, then a goal swap between ai
and aj will happen with a nonzero probability.

Proof: If (vi, vj) ∈ Et, then the goal swap between ai and
aj will not increase di + dj . By Algorithm 4 (Lines 16–21),
the goal swap between ai and aj will happen with a nonzero
probability, completing the proof. �

Lemma IV-B.4: IfJ2 = 0, then ifJ1 �= 0,J1 will decrease by
at least 1 within a finite amount of time with nonzero probability,
independent of the history.

Proof: We prove Lemma IV-B.4 via case analysis. If J1(t) �=
0, then at least one agent intends to move to the next waypoint,
there are three possible cases.
� Case 1: The graph Gt is cyclic:
Assume that at time t0, there exists a cycle C on Gt0 . Let

len(C) be the length of C, i.e., the number of the agents that are
on cycle C at time t0. We use a1, a2, . . ., alen(C) to denote the
agents that are on C at time t0, for the sake of description, we
order these agents in the way such that:
� if i < len(C), then (ai, ai+1) ∈ Et0 ;
� if i = len(C), then (ai, a1) ∈ Et0 .
Note that it does not matter how we pick the first agent a1, a1

could be any agent that is on cycle at time t0.
We show that Lemma IV-B.4 holds in Case 1 by contradiction.
Suppose that ∀τ > 0, P r{J1(t0 + τ) ≤ J1(t0)− 1} = 0,

i.e., the probability that J1 strictly decreases after t0 is 0. One
can conclude the following if the assumption is true:
� no agent can change its position after t0, asJ1 will decrease

every time when any agent moves, moreover;
� no agent can execute the goal swaps that can decrease J1.
In other words, the only two possible actions left for agents

are—doing nothing, or executing the goal swaps that cannot
change J1 (Algorithm 4, Lines 16–21). It is worth noting that
if these two actions are the only ones available for agents, then
each time when an agent tries to decide an action to execute, the
action “doing nothing” will be picked with a nonzero probability,
as stated in Algorithm 4 (Lines 16–21).

Next, let q∗ be a1’s goal at t0, combing Lemma IV-B.3 and
the conclusion we just obtained, we have that the following will
happen with a nonzero probability.

Fig. 5. From left to right: Shape that contains four goal points; a sequence of
events where J1 strictly decreases. The frames of this sequence of events are
ordered from left to right. All the information is encoded in the same way as
Fig. 2.

Fig. 6. Illustration of two possible cases (shown by a sequence of two figures
on the left and a sequence of two figures on the right) where the head agent
has already arrived at its goal. The goal shape is shown in Fig. 5 (left). All the
information is encoded in the same way as Fig. 2.

� q∗ propagates among the agents a1, . . ., alen(C) via swap
in the order that: a1 → alen(C) → alen(C)−1 → · · · → a2.

� For any agent ai �= a1 that is on C at time t0, it will do
nothing but wait to take q∗ from its successor (via goal
swap) and then pass q∗ to its predecessor (via goal swap).

That is, q∗ will traverse agents a1, . . ., alen(C) in the opposite
direction of C with a nonzero probability, a graphical illustration
of this event is shown in Fig. 5.

Let t1 be the time that q∗ is passed to a2, we have J2(t
1) ≤

J2(t
0)− len(C), because the owners of goals of all the agents

that are on C have moved one step closer to goal via goal swap
(see Fig. 5 for a more intuitive illustration). This observation
suffices to show that it is incorrect to assume that the probability
that J1 strictly decreases after t0 is 0, completing the proof in
Case 1.

On the other hand, if the Gt is acyclic, we can find at least one
head agent, i.e., the agent that is not blocked by any other agent.
The head agent(s) can either be an agent that already arrived at
the goal, or an agent that is still moving to the goal.
� Case 2: The graph Gt is acyclic, moreover, there exists one

head agent ai that has not arrived at its goal Tai
(t) yet:

If at least one head agent has not arrived at its goal yet, J1
will decrease by one because its next waypoint is open, thus,
Lemma IV-B.4 holds in case 2.
� Case 3: The graph Gt is acyclic, moreover, all the head

agents have arrived at their goals:
If all the head agents have already arrived at their goals, then

there is at least one non head agent who is blocked by a head
agent. Using Lemma IV-B.3, we have that the blocked agent can
make progress with a nonzero probability by swapping with the
blocking head agent that has already arrived at its goal. With at
most |A| − 1 swaps, the agents will either form a cycle, as shown
in Fig. 6 (right), which is Case 1, or generate a head agent that
has not reached its goal, shown in Fig. 6 (left), which is Case 2.
Hence in Case 3, J1 will decrease within a finite amount of time
with nonzero probability as well, completing the proof. �

Lemma IV-B.5: The motion planner will make the position of
each assigned goal‘s owner to greedily move toward the position
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Fig. 7. Illustration of two possible cases (shown by a sequence of two figures
on the left and a single figure on the right) where two of qd’s owners (circles
in green) meet each other. All the information is encoded in the same way as
Fig. 2.

of the goal point with nonzero probability, regardless of the
swarm’s configuration.

Proof: We prove this lemma via case analysis. At time t, for
any agent a, let q be Ta(t), i.e., agent a’s target at time t. We
here exhaustively outline all two possible cases.
� Case 1: a has not arrived at q:
If a has not arrived at q, a will intend to move to the next

waypoint to get closer to q. If the waypoint is unoccupied, then
a moves one step closer to q. Otherwise, if the waypoint is
occupied, using Lemma IV-B.3, q will be passed to the agent that
is occupying the waypoint with nonzero probability. In either of
these two cases, the distance between position of q’s owner and
q decreases by one with nonzero probability.
� Case 2: a is already at q:
If a is already at q, then a can stay at q with nonzero proba-

bility, completing the proof. �
Lemma IV-B.6: If J2 �= 0, then the event that: two agents

that are holding the same goal at the same time are located
within distance R, will occur within a finite amount of time
with nonzero probability. Namely, at time t, if J2 �= 0, then
∃ τ , ε > 0, ai �= aj , such that

Pr{||pai
(t+τ)−paj

(t+τ)|| ≤ R, Tai(t+τ)=Taj(t+τ)} ≥ ε

Proof: If J2 �= 0, then at least two agents are holding the
same goal point. Let qd be a goal which is assigned to more
than one agent. Lemma IV-B.5 is sufficient to show that two of
qd’s owners can concurrently keep moving greedily to qd with
nonzero probability, shown in Fig. 7 (left), unless one of qd’s
owners blocks the other owner’s way in the trip, shown in Fig. 7
(right). However, one agent being blocked by the other implies
that the distance between two agents is one grid length, which
is smaller than R, completing the proof. �

Lemma IV-B.7: If J2 �= 0, then J2 will decrease by at least
one within a finite amount of time with nonzero probability,
independent of the history.

Proof: Lemma IV-B.6 suggests that if J2 �= 0, then two
agents holding the same goal will meet each other within a
finite amount of time with nonzero probability, which means
new goal selector will be triggered within a finite amount of time
with nonzero probability. Additionally, when new goal selector
(Algorithm 4, Lines 3–10) is triggered, all the goal points in Q
will be picked with a nonzero probability, which implies that a
goal that has not been assigned to swarm yet will be picked with
nonzero probability. As a result, J2 will decrease with nonzero
probability, completing the proof. �

Fig. 8. 1024 agents form four user-defined shapes. (Bottom) example input
binary images and (top) corresponding collective formations.

Theorem IV-B.1: Both J1 and J2 will almost surely converge
to zero, regardless of the swarm’s initial configuration.

Proof: Using Lemmas IV-B.1, IV-B.2, IV-B.4, and IV-B.7,
we can show that both J1 and J2 satisfy all three conditions
proposed in Proposition IV-B.1. Hence, both J1 and J2 will
almost surely converge to zero, regardless of the initialization
of the swarm. �

C. Complexity

In this section, we study the cost of implementation of the
algorithm proposed in Section III-C with respect to its time com-
plexity, memory complexity, and communication complexity.

First, we study the time complexity for each agent planning
their action, i.e., the time complexity for executing Algorithm 2,
Lines 9–35. One can see that the time cost is dominated by the
time complexity for looping through all the messages received
in last 2

fcomm
amount of time. In the msg_buff, there will be at most

2|Nai
(t)| amount of the messages, on the other hand, each agent

can have at most � 2R
l �2 amount of neighbors in communication

range, where R is agent’s communication range, l is the grid
length. This suffices to show that the time complexity for the
decision making is O(�R

l �2).
Next, the algorithm‘s memory footprint is dominated by the

memory to store the input point set, as a result, the algorithm’s
memory complexity is O(|Q|).

To investigate the algorithm’s communication complexity,
i.e., the amount of data each agent will transmit during one unit
of time, we first study the amount of data that each agent will
transmit within each communication round, i.e., 1

fcomm
amount

of time. During each communication round, an agent ai will
broadcast one message with a length of O(1) (Algorithm 3,
Line 2), and process at most |Nai

(t)| 2-way handshakes, as ai
can receives no more than |Nai

(t)| amount of messages from
the neighbors in communication range. Additionally, the amount
of data exchanged to process a 2-way handshake is O(1), as a
result, during one communication round, the amount of data
that each agent ai will transmit to its neighbors is O(�R

l �2),
as each agent can receive no more than � 2R

l �2 neighbors in
communication range, whereR is agent’s communication range,
l is the grid length. On the other hand, in a unit of time, there
will be O(fcomm) communication rounds, which suggests that
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Fig. 9. Still images from simulation where 1024 agents try to form two different shapes in a row. In this simulation, a swarm of 1024 agents first form a letter
“N,” then switch to a letter “U” when it is detected that all robots have reached a goal. (a) T = 0 s. (b) T = 99 s. (c) T = 147 s. (d) T = 838 s. (e) T = 877 s.
(f) T = 888 s. (g) T = 906 s. (h) T = 1031 s.

for each agent, the amount of data transmitted during a unit of
time is O(�R

l �2fcomm).

V. PERFORMANCE EVALUATION

To demonstrate the correctness and performance of the al-
gorithm presented in this article, we implemented and tested
it in both simulated and physical experiments. For all ex-
perimental tests, the shape was successfully formed. We also
compared the performance of our proposed algorithm with
the centralized algorithm proposed in [12]. In this centralized
approach, every agent is initially assigned a unique goal. In
addition, this assignment minimizes the total traveling distance.
It is shown in [12] that with such optimal initial assignment,
the agents‘ paths will form a acyclic direct graph , and each
agent’s motion can be then scheduled via vertex ordering.
While the centralized method can produce the distance-optimal
solution, which outperforms our method, it could suffer from
a single-point of failure and therefore is less robust than our
method.

A. Simulation

In simulation, each agent is modeled as an omnidirectional
robot able to sense its position and orientation in a common
coordinate system. We treat each agent as a circle with a radius
of 0.05 m. Agents are able to communicate with any other agent
who lies within its communication range of 0.6 m, and travel
at a speed of 0.05 m/s. These values match the physical robot
described in Section V-B1.

In each test, the goal shape is given to the swarm in the form
of a binary figure, i.e., a black and white image. The figure is
scaled such that the number of goal pixels on the figure equals

the number of agents. Example input images and corresponding
shapes formed by the collective are shown in Fig. 8. See Fig. 9
for images from one simulation where 1024 agents formed the
letters “N” and “U” in sequence.

First, the simulation is used to investigate the effect of the
swarm size on the algorithm’s convergence time, i.e., the total
time it takes for the swarm to complete shape formation as
well as average robot travel distance, i.e., the total distance
traveled by all robots normalized by the number of robots. In
this task, swarms of size 16–529 agents formed a given target
configuration from a random initialization. For every swarm
size, 200 trials were run, and in each trial the target shape is
randomly generated as a set of connected random positions.
The large number of trials are able to eliminate the bias on
the final result that is introduced by the target shape, since in
each trial the target shape is randomly generated. Fig. 10 shows
the distributions of convergence time as well as the average
distance traveled for different swarm sizes, and a comparison
to the centralized method [12].

One counter-intuitive observation here is that the convergence
time for centralized methods does not monotonically increase
over the swarm size, sometimes even goes down. It is shown
in [12] that the worst case convergence time for the centralized
method is |A|+ dmax − 1 where |A| is the number of agents,
and dmax is the maximal individual travel distance (the distance
from one agent’s initial position to its goal) among swarm. On
the other hand, in simulations, the swarm moved in a fixed-size
arena, hence when swarm size |A| increases, i.e., the density
of the swarm increases, the dmax will decrease. As a result, the
convergence time for centralized methods will not necessarily
increase over the swarm size. The fact that agents move in a
fixed-size arena can also help to explain the trend of the total
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Fig. 10. Simulation results for both our method (red) and the centralized
method [12] (blue) in standard box-plot format. For each number of agents,
200 trials were run, and in each trial the target shape was randomly generated.

distance plots. As |A| increases, the swarm’s initial position will
be “closer” to the target positions (one can consider an extreme
case where number of the agents equals to the number of the
vertices in arena, in this case, the average distance traveled will
be zero), hence the overall trend of the distance plot is that the
average distance traveled goes down as number of agents goes
up. In these plots, we can see that the distance traveled incurred
by our method is only around 20% more than the one that is
incurred by the centralized method. Moreover, when the density
of the swarm is low (less than 225 agents in arena), the difference
on convergence times for both methods are considerably small.
When the density of the swarm increases, the convergence time
for our method sharply increases, this is because in this case, the
random goal swaps, i.e., the goal swaps to resolve the deadlock,
will more likely happen, as a result, the algorithm will converge
slower.

A second test compares the two approaches for new goal
selector. It measures the convergence rate as well as the total
distance traveled by a fixed-size swarm. In this experiment, 400
agents try to form 200 different randomly generated shapes. For
each shape, the swarm executes the formation algorithm 200
times, giving a total of 40 000 simulation runs. For each of these

Fig. 11. Illustration of the improvement made by the gradient-based selector
on the algorithm convergence rate and total distance traveled compared to using
a random selector. Each solid line in the plot is the average result from 40 000
simulations of 400 agents, and the colored shade areas show the confidence
interval for convergence and total distance traveled over time at a confidence
level of 2σ (two standard deviations above or below the average).

runs, agents are initialized with a uniform random distribution
centered at the shape’s center of mass. For every time step,
we measure the average completion rate, the average distance
traveled, and the confidence interval at a confidence level of
2σ for both convergence and distance travel, at that time for all
40 000 runs. The results are shown in Fig. 11. In these plots, we
can see that the gradient-based selector can dramatically increase
the algorithm’s convergence rate and helps to eliminate the long
tail of convergence incurred by the random goal selector. Besides
that, unsurprisingly, the gradient-based goal selector can also
reduce the variance of the convergence time and total distance
traveled.

Simulation was also used to compare the convergence rate as
well as swarm’s total traveled distance for both our method and
the centralized one. The experiment contains 40 000 trials; in
every trial, 400 agents tried to drive toward a set of randomly
generated goal points. First, agents were initialized with random
starting locations. Next, either our method or the centralized
method was used to drive the agents to the goal points. The
simulation results of our method and the centralized method are
shown in the Fig. 12. The difference between Figs. 10 and 12 is
that Fig. 10 shows the statistics of the final solution’s quality, i.e.,
the total distance and convergence time, whereas Fig. 12 helps
to understand how the algorithm’s convergence and distance
traveled change during execution. The plot shows average result
and the confidence interval with a confidence level of 2σ for
both the convergence rates and total distance traveled for both
methods. Note that at the beginning, from time 0 to 80 s, our
algorithm makes faster progress than the centralized method.
This is because in the centralized method, agents take goals
located in the inner area of the shape first so they will not block
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Fig. 12. Performance comparison between our method (red line) and cen-
tralized method (blue line). Each solid line in the plot is the average result
from 40 000 simulations of 400 agents, and the colored shade areas show the
confidence interval for convergence and total distance traveled over time at a
confidence level of 2σ (two standard deviations above or below the average).

other moving agents’ paths, while in our method, agents initially
choose goals at random. As a result, the agents are more likely to
take the goal points nearby first, giving our method a short-term
win at the beginning.

B. Experiments

To validate the correctness and efficiency of our algorithm
beyond simulation, we performed several physical experiments
using the Coachbot V2.0 swarm system, a custom-made swarm
of 100 differential-drive wheeled robots as shown in Fig. 13.

1) Hardware: There are two key components in the swarm’s
hardware design—the robot itself, and the base station used to
manage and operate the swarm.

The design of Coachbot V2.0 consists of four key
components—a main computer, localization module, power
module, and locomotion module. The main computer is a Rasp-
berry Pi 3b+ with a 1.4-GHz 64-bit quad-core CPU, 1-GB
RAM, and dual-band 802.11ac wireless LAN (2.4 and 5 GHz).
The localization module, shown in Fig. 13, is a custom PCB
consisting of two TS3633-CM1 sensors and an Atmel attiny87
microprocessor. The two sensors receive infrared signals from
the ceiling mounted HTC vive lighthouse which emits a time-
varying infrared pattern, allowing the sensors to determine their
position. The microprocessor calculates the positions of the two
TS3633-CM1 sensors at an update rate of 30 Hz, and sends the
sensors’ positions to the Raspberry Pi via the UART. With this
information, the main board can calculate the robot’s orientation
and position accurate up to 15◦ and 0.04m. The robot is powered
by a 2.5 Ah lithium-ion rechargeable battery. Additionally, a
Bluetooth low energy module can disconnect the battery power
from the rest of the robot. This allows a user to send a Bluetooth
command to put robots into a low-energy sleep mode as well

as wake robots up from this sleep mode. With a fully charged
battery, robots can operate for approximately four hours, or
sleep for three months. The robot drives across a flat surface
using two wheels driven by dc motors. An H-bridge controls the
speed and direction of each motor independently, allowing for
differential drive. Each robot has a height of 0.12 m and a radius
of 0.05 m.

A computer workstation manages all robots in the swarm
at once, allowing a single person to easily operate the entire
swarm without any direct interaction. However, the workstation
does not control robots during experiments. The workstation
can communicate with all robots using Wi-Fi, and can power
the robots on and off using Bluetooth. Custom-made software
on the workstation uses these capabilities to monitor the status
of all robots, update the code executed on the swarm, start/stop
the robots’ program, turn them ON/OFF, and collect the data from
experiments.

2) Software: Software running in a modified version of Rasp-
bian operating system is running onboard each robot‘s Rasp-
berry Pi, controlling the robot’s basic behaviors, robot-to-robot
communication, and interaction with the base station.

There are two separate communication channels in the
system—a star network between base station and robots, and
a mesh network among the robots. These two communication
channels serve two separate tasks [see Fig. 13 (2)]. Both channels
make use of the Wi-Fi capabilities of the onboard Raspberry Pi.
The star network is mainly used for transferring files between
the base station and robots, i.e., uploading the user programs to
the robots, while the other channel will support robot-to-robot
communication used for the user programs. The star network is
implemented by connecting the robots to the base station’s Wi-Fi
router. Communication along this channel uses standard TCP/IP
protocol to ensure the reliable transfer of data and files. For the
robot-to-robot channel, communication uses layer 2 broadcast-
ing, i.e., MAC address-based broadcasting. This allows robots to
communicate with other robots directly, without use of the base
station router. By embedding the robot‘s position in the data
packet, the robots’ communication range in experiments can
be artificially limited to a desired value by actively discarding
messages which originate outside the desired communication
range. In this article‘s experiments, the robots’ communication
range is limited to 0.6 m.

A custom coordination system makes use of the communi-
cation on the star network to operate and manage the swarm
in an easy, scalable way [53], [54]. This system has three
software components—an FTP server, a monitor module, and a
broadcaster module. The FTP server is used to update the code
running on the robots. It can push new software to all robots at
once. The monitor module is used to monitor the status of all
robots, which is transmitted from each robot to the base station. It
monitors information, such as battery voltage, firmware version,
etc., and displays it to the operator. The broadcaster module is
used to send commands to the swarm which help in its operation,
such as starting and stopping execution of the user code, turning
the robots ON/OFF, and moving robots to a charging station.
The broadcaster module makes use of both Wi-Fi and Bluetooth
communication.
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Fig. 13. Illustration of hardware used in experiments. (1) Key components of the Coachbot V2.0 swarm system: (1 Left) Robot used in the experiments. The
robot is in a cylinder shape with a height of 0.12 m and a radius of 0.05 m. Key components are: (a) Localization system based on the HTC Vive. (b) Raspberry PI
b+ computer, (c) electronics mother board, and (d) rechargeable battery. (1 Right) Robot arena used in experiments: (e) overhead camera (only used for recording
videos), (f) overhead HTC Vive base station, and (g) swarm of 100 robots. (2) Illustration of the Coachbot V2.0 swarm communication network. The green link is an
ethernet connection between the base station and the Wi-Fi router. The blue links are TCP/IP connections, and the black links are layer 2 broadcasting connections.
(3) Swarm of 100 robots. (4) Robots charging by connecting to two metal strips attached to the wall.

3) Dealing With Real-World Nonidealities: In reality, some
assumptions proposed in Section II-A are difficult to be guar-
anteed in real robot hardware. To compensate the real-world
nonidealities, such as communication errors, imperfect robot
motion, sensing errors, etc., we relax the assumptions proposed
in Section II-A as follows.

a) For any agent, the frequency of its clock is bounded,
specifically: ∃fmax

clock, f
min
clock s.t. for any agent ai, we have

fmin
clock ≤ f i

clock ≤ fmax
clock.

b) Note that for each agent ai, its communication rate f i
comm

is defined according to its onboard clock, i.e., the clock
that is with frequency f i

clock. As a result, even though each
agent is programmed to broadcast at the same frequency
fcomm (Algorithm 3, Line 4), from a global observer‘s per-
spective, their communication rate could be still different
due to the difference on clock’s frequency f i

clock.
c) The interagent communication packet loss rate is small

enough such that: for each robot, if it sends the same mes-
sagem times in a row, it is guaranteed that this message can
be received by all its neighbors in communication range.

d) For any agent ai, the speed vim at which it moves on a grid
edge is bounded—namely, ∃vmax, vmin s.t. for any agent
ai, we have vmin ≤ vim ≤ vmax.

First, note that as shown in Section IV-A, the proof of
Theorems IV-A.1 and IV-A.2 does not rely on any assumption
about robot’s physical speed, in other words, only the relaxation
of assumptions (a), (b), and (c) will effect the correctness of
Theorems IV-A.1 and IV-A.2. To preserve the correctness of
Theorems IV-A.1 and IV-A.2, in practice, we extend Δt to make

the robot to act more conservatively, so as to compensate the
difference on robots’ clock frequency and packet loss. To be
specific, we extend Δt such that

Δt ≥ 2m
fcomm

fmax
clock

fmin
clock

.

Here, the first term 2m
fmin

comm
is for accommodating the commu-

nication loss, and the second term fmax
clock

fmin
clock

is for compensating the
difference on robots’ clock frequency. The reason for the second
term is that when one agent executes Algorithm 2, Line 30 and
Algorithm 3, Line 4, it will use the onboard clock to do the
calculation, and different clock frequency will yield different
results. Therefore, we add the second term to guarantee that
for the robot with the fastest clock, it will wait long enough to
accommodate the one with the slowest clock.

So far, we showed that the correctness of Theorems IV-A.1
and IV-A.2 can be preserved when the assumptions proposed in
Section II-A are relaxed. However, when agents move on grids in
different speeds, collisions could still happen. To accommodate
the difference on robot’s physical speeds, we stretch the grid
length l so as to give robots some “buffer space.” Specifically,
we want l large enough such that
� When two robots move on two orthogonal adjacent edges,

no collision happens, i.e.,

min
√

(l−vmaxt)2+(vmint)2≥2r, subject to t ∈
[
0,

l

vmax

]
.
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� When two robots move on two collinear adjacent edges,
no collision happens, i.e.,

min(l − vmaxt+ vmint) ≥ 2r, subject to t ∈
[
0,

l

vmax

]
.

Solving those two inequalities above, we have

l ≥ 2

√
v2max + v2min

vmin
r.

Additionally, in the algorithm, we have the assumption that
the robot can move in any direction directly, which does not hold
for the Coachbot V2.0, as Coachbot V2.0 is a differential drive
robot. When a Coachbot V2.0 moves from one waypoint wpa to
another waypointwpb, it will first spin at waypointwpa to adjust
its orientation to be parallel with the grid edge connecting wpa
andwpb, before moving towpb. Note that for each step, the robot
may change its orientation by 0 or π

2 rads (because the robot
can move both forward and backward, hence it does not need to
adjust its orientation by more than π

2 rads). Different heading
adjustments will take different amount of time, as a result, for
those robots that transit to their next waypoints at the same time,
the robots who need to spin by π

2 rads will start moving toward
their next waypoint later than the ones that do not need to spin,
so a collision may occur. To compensate this difference on the
adjustments of the robot’s heading, we introduce another type of
“buffer space” to grid length l, that is to say, assume the robot’s
minimal spin speed is ω∗, we enforce the grid length l to be

l ≥ 2

√
v2max + v2min

vmin
r + vmax

π

2ω∗ .

In experiments, our choice of grid length l is 0.20 m.
4) Results: In these physical experiments, we demonstrate

that our algorithm can be easily implemented on a relatively
large scale physical swarm, and it can provide reliable per-
formance. Additionally it is robust to real-world noise in both
communication, sensing, and motion. In this experiment, 100
robots start randomly dispersed and form the letters “N,” “U”
in sequence. With the help of hop-count information, robots
can detect when the first letter is completed and then switch
to form the second shape, an “U.” Images from one of these
experiments using our algorithm is shown in Fig. 1. We also
compared the real-world performance between our algorithm
and the centralized approach. A shape was formed 15 times with
both approaches, and we compared the average convergence
rate and average total distance traveled for both approaches.
In all these 30 experiments, the shape formation successfully
completed. The results from this comparison experiment are
shown in Fig. 14.

In these plots, we can observe that our method gets a short-
term win of convergence rate at the beginning compared to
the centralized method, which is consistent with the simulation
result. On the other hand, one observation here is that in the
simulation plots (see Fig. 12), both the convergence and the
distance traveled monotonically increase over time, whereas in
Fig. 14, during the first 20 s, the convergence plot fluctuates. This
is because, in simulation, the agents are tasked to form a set of
random shapes from a random initialization of positions whereas

Fig. 14. Illustration of average performance comparison between our method
(red line) and the centralized method (blue line). Each solid line is the average
result from 15 physical experiments of 100 robots, and the colored shade areas
show the confidence interval for convergence and total distance traveled over
time at a confidence level of 2σ (two standard deviations above or below the
average).

in all physical experiments the robots are tasked to form the
same shape, letter “N,” which will introduce the bias to the final
result. Additionally, noise in robot‘s motion, communication,
and sensing, cannot be captured by the simulation very well, and
the number of trials are not large enough to eliminate the noise’s
effect on the convergence rate. As a result, the convergence plot
for physical experiment is not monotonically increasing over
time.

VI. CONCLUSION

In this article, we introduced a fully distributed shape forma-
tion algorithm which enabled a swarm of robots to move and
form a user-specified shape quickly and without collision. With
this algorithm, agents took an array of goal points as input, then
used the local information to distribute the goals among the
swarm and schedule the collision-free paths concurrently. To
demonstrate the correctness and performance of our algorithm,
we executed our algorithm on a swarm of up to 1024 simulated
robots and 100 real robots. The result of these experiments
showed that while this algorithm was slower than the centralized
approach, it could still reliably converge to all robots forming
the desired shape. Additionally, the large numbers of simulation
trials as well the real robot experiments showed that it could do
so with only a small difference in travel distance, around 25% to
be specific, when compared to an optimal centralized approach.
For future work, we plan on addressing some of the current
limitations of this work, such as removing the requirement of
grid representation of the space, and using a coordinate system
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generated using robot-to-robot communication and sensing, in-
stead of relying on a global positioning system.
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