
934 IEEE CONTROL SYSTEMS LETTERS, VOL. 4, NO. 4, OCTOBER 2020

Function Approximation Technique Based
Immersion and Invariance Control for

Unknown Nonlinear Systems
Yang Bai , Member, IEEE , Yujie Wang , Mikhail Svinin , Member, IEEE ,

Evgeni Magid, Senior Member, IEEE , and Ruisheng Sun

Abstract—A function approximation technique based
immersion and invariance (FATII) control method is
proposed in this letter. Firstly, an unknown control system
is restructured as the combination of an auxiliary system
and a variation term from the original system. The variation
term is treated as a time-varying uncertainty and parameter-
ized by a group of weighted chosen basis functions. These
weights are estimated at every time instant and the change
of the estimates is governed by an update law. The update
law is defined based on an immersion and invariance
approach such that both the system state and the estima-
tion error converge to zero. The FATII method is model-free
and thus applicable to a wide range of systems. The asymp-
totic stability of the proposed method is established and its
feasibility is verified under simulations.

Index Terms—Robust adaptive control, uncertain
systems.

I. INTRODUCTION

THE NEED for the control of nonlinear systems arises in
many practical applications that include the use of ships,

underwater vehicles, aircraft, satellites, flexible joint robots,
hyper-redundant and snake-like manipulators, walking robots,
hybrid machines, etc.

To control these systems, various methods have been
proposed in the literature, which can be classified into two
main types: model-based and model-free methods. Model-
based control methods include energy shaping [1], partial
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feedback linearization [2], backstepping [3], sliding mode
control [4], [5], etc. They commonly rely upon the model
information of the control systems, which limits their range
of applications. Also, they are not sufficiently robust to
large system uncertainties. Instead of utilizing the model
information, a number of model-free methods [6] have been
developed for designing controllers directly from the input-
output data, bypassing the modelling step. Although they are
widely applicable and adaptive to uncertainties, the asymptotic
stability of these methods is difficult to prove.

To feature both the stability and the adaptiveness, in this
letter, we propose a novel control method (the FATII method)
which is model-free, and thus applicable to a wide class
of systems and robust to uncertainties. Also, the asymptotic
stability of the FATII method can be proved.

The FATII method is based on the function approximation
technique (FAT) [7]–[9], inspired by its applications on the
adaptive control problems. The FAT-based approaches recon-
struct the time-varying uncertainties in the control systems
as the combination of a group of weighted basis functions
and a remainder term. Then, model reference adaptive control
(MRAC) techniques are utilized to deal with the unknown
weights, and the effects of the remainder term can be elim-
inated by a sliding mode controller [10]–[14]. Note that
FAT-based designs have a drawback that in the absence of per-
sistent excitation (PE) condition, the estimation for the weights
is not guaranteed to converge to the actual value. The draw-
back would deteriorate the control accuracy and lead to an
undesired transient response of the closed loop system [15].

Noticing that the immersion and invariance (I&I) tech-
nique [16], [17] can treat the state stabilization and the
parameter estimation in a unified manner, for the design of
the FATII method, we improve the FAT-based approaches by
utilizing the I&I technique instead of the MRAC, such that not
only the system state, but also the error between the uncer-
tainty and its estimation, are steered to zero. Nevertheless, the
remainder term generated in the function approximation pro-
cess cannot be eliminated by a sliding mode controller when
one directly incorporates the conventional I&I technique into
the FAT-based controller. Regarding this problem, we modify
the conventional I&I technique with the use of switching in
order to deal with the remainder term.

The process for designing FATII controllers is as follows.
A control system is reconstructed as the combination of an
approximated one and the variation from it. The variation term
is then estimated with chosen basis functions weighted by
unknown parameters. Update laws are defined based on the
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modified I&I technique such that the parameters can be auto-
matically adjusted and the effect of the uncertainty term to the
control process can be eliminated.

The rest of this letter is organized as follows. First, in
Section II we state the control problem, illustrate the process
for constructing the FATII controller, and establish its asymp-
totic stability. The feasibility of the proposed control method is
verified under simulations in Section III. Finally, conclusions
are drawn in Section IV.

II. CONTROLLER DESIGN PROCESS

In this section, the FAT approach is firstly utilized to convert
general control systems into a unified form. Next, the FATII
control method is proposed, and its stability is established.

A. Statement of Problem
Given a control system written in the state-space form

ẋ = f (x) + G(x)u + ξ , (1)

where x ∈ Rn represents the state, u ∈ Rm with n > m,
represents the input, and ξ ∈ Rn for the external disturbance
which is assumed to be bounded, define an asymptotically
stabilizing law u for system (1).

Assume that f̃ and G̃ respectively stand for the nominal drift
term and control matrix such that

f = f̃ + δf , G = G̃ + δG, (2)

where δf and δG denote the difference between the nominal
and actual values. By substituting (2) into (1), one obtains

ẋ = f̃ + G̃u + ξ̃ , (3)

where ξ̃ = δf +δGu+ξ is the lumped error [18]. Note that as
stated in [19], the term “unknown system” is utilized in place
of “uncertain system” to stress that f and G are not known a
priori and thus are possibly subject to large uncertainty ξ̃ , so
that model-based control would not be applicable.

By mimicking the pole placement method for linear
systems, one introduces an auxiliary input u∗ ∈ Rn to match
the dimension of input with that of the output, such that

u = G∗u∗, (4)

where the auxiliary matrix G∗ is chosen to be a full rank m×n
matrix. Then, the control system (1) is rewritten as

ẋ = f̃ + G̃G∗u∗ + ξ̃ , (5)

where the number of the inputs equals that of the states. Note
that an essential condition for the selection of matrix G∗ is
that the reconstructed system (5) is required to be controllable,
otherwise the design of u∗ cannot guarantee the convergence
of x. Methods for the design of G∗ that render system (5)
controllable, are specified in the Appendix.

To further simplify (5), one can rearrange it as

ẋ = u∗ + d(x, t, u∗), (6)

where d(x, t, u∗) = f̃ + (G̃G∗ − I)u∗ + ξ̃ . Through the above
rearrangement, the original system (1) is restructured as the
combination of two parts, a trivial linear system ẋ = u∗ refer-
ring to the auxiliary system, and d, which can be viewed as
an uncertainty term to the auxiliary system. Thus the original
problem is reformulated to the adaptive control problem for a
linear system with time-varying uncertainties, which is stated
as designing a locally asymptotically stabilizing law u∗ for (6),
with d unknown.

To tackle the stated problem, we utilize the weighted basis
functions to approximate d in the control system (6) at each
time instant as

d(x, t, u∗) =
N∑

i=1

diψi(x, t) + ε, (7)

where di is constant and ψi consists of x and t, and ε, referring
to the approximation error, describes the deviation between the
uncertainty d and the weighted basis functions. Substituting (7)
into (6) yields

ẋ = u∗ +
N∑

i=1

diψi(x, t) + ε. (8)

Note that the controllability of the restructured system (5)
implies the existence of bounded u∗ for the desired x such
that d is definable and bounded. Otherwise, the function
approximate technique through (7) to (8) is not applicable.

For the control of (8), several remarks are in order.
Remark 1: The control problem requires to eliminate the

effect of di in (8). For this purpose, di, at each time instant t,
is estimated by d̂i(t) through the MRAC techniques in the FAT-
based controls. However, d̂i(t) is not guaranteed to converge to
di in the absence of the PE condition. The error between the
actual parameters and the parameter estimation can produce
large uncertainty, which would deteriorate the control accuracy
and lead to an undesired transient response of the closed-loop
system.

A unique feature of the I&I framework is that it allows to
treat the state stabilization and the parameter estimation in a
unified manner [17]. For the convergence of both the system
state and the estimation error, we propose in Section II-B the
FATII method based on the I&I approach.

Remark 2: In the FAT-based controller design, the effect of
ε in (8) is commonly covered by a sliding mode controller, but
this operation cannot be accomplished when the conventional
I&I technique is incorporated into the FAT-based controller.
Therefore, in the design of the FATII controller, we modify
the I&I technique with the use of switching to deal with ε.

Remark 3: Several candidates for the basis function ψi
in (7) can be chosen to approximate the nonlinear functions,
and in this letter, we select the Fourier series [20], [21]. From
the Weierstrass theorem, when N → ∞, the approximation
error ε would be infinitesimally small. By selecting enough
number of the basis functions, the estimation of the uncertainty
can be sufficiently accurate such that ε in (10) is negligi-
ble [20]. Thus, it is reasonable to have the following [10]–[14]

Assumption 1: The error ε is bounded such that ‖ε‖1 ≤ E1
and ‖ε‖2 ≤ E2 where E1 and E2 are positive constants.

B. FATII Based Controller Design
Define in the extended space (x, d̂i) the manifold

Mi = {(x, d̂i) ∈ Rn | di − d̂i − β i = 0}, (9)

where β i(x, t) is a continuous function to be specified. The
motivation for this definition is described as follows. The
dynamics of (8) restricted to the manifold Mi (provided it
is invariant) is described by

ẋ = u∗ +
N∑

i=1

(d̂i + β i)ψi + ε. (10)

Note from (10), the unknown vector di is excluded from the
expression of ẋ, which is important in the controller design
process since di cannot appear in the control law.
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However, (10) is equivalent to (6) only when the system
dynamics stay in the manifold Mi. By defining the off-the-
manifold variable

zi = di − d̂i − β i, (11)

where zi ∈ Rn×1 and β i ∈ Rn×1, zi = 0 implies that the system
dynamics stay in the manifold Mi. With the off-the-manifold
variable, the state equation is transformed to

ẋ = u∗ +
N∑

i=1

(
zi + d̂i + β i

)
ψi + ε, (12)

where
∑N

i=1 ziψi represents the estimation error of the system
uncertainty. Thus, the original control problem can be restated
as defining an asymptotically stabilizing law u∗ for both the
system state and the estimation error.

Remark 4: As mentioned in Remark 1, by selecting a suf-
ficiently large N, ε in (10) is negligible [7], [20]. On the
other hand, taking ε into account will reduce the number
of basis functions and thus, increase the efficiency of the
estimation process. To address both cases, in what follows,
FATII controllers are proposed respectively when ε is not (see
Section II-B1) and is negligible (see Section II-B2).

1) Controller Design When ε Is Not Negligible: When the
number of basis function N is selected small (seeking for a
low computational load) and thus ε is not negligible, define
the following controller

u∗ = −Kx − γ sgn(x) −
N∑

i=1

(d̂i + β i)ψi,

˙̂di =
{

−xψ̇i +
(

Kx + γ sgn(x)
)
ψi, ‖x‖2 > δ

xψi, ‖x‖2 ≤ δ

β i =
{

xψi, ‖x‖2 > δ
0, ‖x‖2 ≤ δ

(13)

where δ is an arbitrary positive constant, γ > E1, K = K1 +
K2 + I, and K1, K2 are positive definite matrices satisfying
that λmin(K2) ≥ E2

2/δ
2.

Remark 5: It can be seen that the closed-loop system for-
mulated by the plant (12) and controller (13) is a switched
nonsmooth system. Thus, the traditional Lyapunov techniques
are not applicable. To address this problem, the generalized
Lasalle-Yoshizawa theorem in [22] is employed, where the
main idea is stated as follows: one can establish asymp-
totic properties for the generalized solutions of the switched
nonsmooth system by using those of its subsystems.

In addition, for a differential equation ẋ = h(x, t) with dis-
continuous right-hand side, an absolutely continuous function
x(t) is called a generalized solution (Filippov solution) to it
on [t0, t1] if ẋ ∈ F[h](x, t), where

F[h](x, t) =
⋂

ρ>0

⋂

µ(N )=0

co h(B(x, ρ) − N , t), (14)

represents the Filippov regularization [23]. In (14), co denotes
the convex closure, B(x, ρ) the open ball of radius ρ centered
at x, and

⋂
µ(N )=0 the intersection over all sets N of Lebesgue

measure zero. It has the following property [24]

F[h1 + h2](x, t) ⊆ F[h1](x, t) + F[h2](x, t), (15)

which will be used in the following.
Theorem 1: Every maximal solution of the Filippov reg-

ularization of the switched nonsmooth system formulated
by (12) and (13), regardless of the initial condition, is com-
plete [25], bounded, and satisfies limt→∞ x(t) = 0.

Proof: Define the state-dependent switching signal σ (x),
where σ = 1 represents ‖x‖2 > δ, and σ = 2 denotes
‖x‖2 ≤ δ. The following steps are based on the notation of
the switching signals.

By substituting (13) into (12), one obtains

ẋ = −Kx − γ sgn(x) +
N∑

i=1

ziψi + ε, (16)

and the substitution of (16) into the derivative of (11) gives

żi = gi,σ =
{

−ψi

(∑N
j=1 zjψj + ε

)
, σ = 1

−xψi. σ = 2
(17)

By introducing y =
[
x, z,

1 · · · z,
N

],, (16), (17) can be
written in the augmented state space form as ẏ = f (y, t), the
subsystem of which is described as

ẏ = fσ (y, t), σ = 1, 2 (18)

where

fσ (y, t) =





−Kx − γ sgn(x) +∑N
i=1 ziψi + ε

g1,σ (y, t)
...

gN,σ (y, t)



. (19)

According to (14) and (15), define Fσ (x, t) = F[fσ ](x, t) as
the Filippov regularization of the subsystem (18), satisfying
that Fσ (y, t) ⊆ F′

σ (y, t), where

F′
σ (y, t) =





{−Kx +∑N
i=1 ziψi + ε} − γF[sgn](x)

{g1,σ }
...

{gN,σ }



.

To study the generalized solutions of the closed-loop system
formulated by (12) and (13) based on its afore-generated sub-
systems, one constructs the following Lyapunov candidate
function

V = 1
2

y,y = 1
2

x,x + 1
2

N∑

i=1

z,
i zi. (20)

Since V , expressed by (20), is smooth, the Clarke gradient is
reduced to the standard gradient, as ∂V = {y}. It should be
noted that x,F[sgn](x) = {‖x‖1} [22]. Thus, a bound on the
generalized time derivative of the Lyapunov candidate function
V̇σ (σ = 1, 2) can be expressed as

V̇σ = max
q∈Fσ (y,t)

y,q

≤ max
q∈F′

σ (y,t)
y,q = x,

(
− Kx +

N∑

i=1

ziψi + ε

)

− γ ‖x‖1 +
N∑

i=1

z,
i gi,σ . (21)

For both σ = 1 and σ = 2, we need to analyze whether the
corresponding V̇σ is negative semidefinite.

When σ = 1, by substituting the expression of gi,σ as (17)
into (21), one obtains

V̇σ ≤ x,
(

− Kx +
N∑

i=1

ziψi + ε

)
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−
( N∑

i=1

ziψi

),( N∑

i=1

ziψi + ε

)
− γ ‖x‖1,

a rearrangement of which gives

V̇σ ≤ −x,(K1 + K2)x − γ ‖x‖1 + ε,ε

−1
2

(
(

N∑

i=1

ziψi)
,(

N∑

i=1

ziψi) + 2(

N∑

i=1

ziψi)
,ε + ε,ε

)

− 1
2

(
x,x − 2x,

N∑

i=1

ziψi + (

N∑

i=1

ziψi)
,(

N∑

i=1

ziψi)

)

− 1
2

(
x,x − 2x,ε + ε,ε

)
, (22)

where K = K1 + K2 + I and K1, K2 are positive-definite
matrices. One can further simplify (22) as

V̇σ ≤ −x,(K1 + K2)x + ‖ε‖2
2 − γ ‖x‖1 − 1

2
‖x − ε‖2

2

− 1
2

∥∥∥∥∥

N∑

i=1

ziψi − x

∥∥∥∥∥

2

2

− 1
2

∥∥∥∥∥

N∑

i=1

ziψi + ε

∥∥∥∥∥

2

2

≤ −x,(K1 + K2)x + ‖ε‖2
2

≤ −λmin(K1)‖x‖2
2 − λmin(K2)‖x‖2

2 + E2
2. (23)

As λ1 = λmin(K1) > 0, λmin(K2) ≥ E2
2/δ

2, and σ (x) = 1
(‖x‖2 > δ), one obtains V̇σ ≤ −λ1‖x‖2

2.
When σ = 2, by substituting (17) into (21), the general-

ized time derivative of the Lyapunov candidate function V̇σ is
transformed into

V̇σ ≤ x,
(

−Kx +
N∑

i=1

ziψi + ε

)

− γ ‖x‖1 −
N∑

i=1

z,
i xψi

≤ −x,Kx + x,ε − γ ‖x‖1. (24)

The Cauchy-Schwarz inequality gives x,ε ≤ ‖x‖2‖ε‖2, and
as ‖.‖2 ≤ ‖.‖1, x,ε ≤ ‖x‖1‖ε‖1. Since K = K1 + K2 + I, one
obtains

V̇σ ≤ −x,K1x − (γ − ‖ε‖1)‖x‖1 ≤ −λ1‖x‖2
2 − (γ − ‖ε‖1)‖x‖1.

As ‖ε‖1 ≤ E1, by selecting γ > E1, V̇ ≤ −λ1‖x‖2
2 when

σ = 2.
Thus, in conclusion, for both cases when σ = 1 and σ = 2,

V̇σ ≤ −λ1‖x‖2
2. (25)

According to the generalized LaSalle-Yoshizawa Theorem
[22, Th. 3], for switched nonsmooth systems with finite num-
ber of subsystems being active in a small neighborhood of
the state space, all maximal generalized solutions of the
switched nonsmooth system formulated by (16) and (17) are
complete [25], bounded, and satisfy limt→∞ x = 0.

2) Controller Design When ε Is Negligible: When there are a
sufficient number of basis functions, ε is negligible, and thus,
the plant can be simplified from (12) into

ẋ = u∗ +
N∑

i=1

(
zi + d̂i + β i

)
ψi. (26)

The controller is designed as

u∗ = −Kx −
N∑

i=1

(d̂i + β i)ψi,

˙̂di = −xψ̇i + Kxψi,

β i = xψi, (27)

where K is a positive definite matrix satisfying λmin(K) > 1
4 .

The stability of the proposed controller (27) is proved in the
following.

Theorem 2: The closed loop system, formulated by (10)
and (27), is asymptotically stable, and the uncertainty esti-
mation converges to the actual uncertainty asymptotically.

Proof: The substitution of (27) into (26) yields

ẋ = −Kx +
N∑

i=1

ziψi. (28)

To prove the stability of the closed-loop system, the Lyapunov
candidate function can be formulated as

V = 1
2

(

x,x +
N∑

i=1

z,
i zi

)

, (29)

the derivative of which is calculated as

V̇ = x,ẋ +
N∑

i=1

z,
i żi. (30)

The derivative of zi is computed as

żi = − ˙̂di − ∂β i

∂x
ẋ − ∂β i

∂t

= xψ̇i − Kxψi − xψ̇i − ψi

(
− Kx +

N∑

j=1

zjψj

)

= −ψi

( N∑

j=1

zjψj

)
. (31)

By substituting (28) and (31) into (30), one obtains

V̇ = −x,
(

Kx −
N∑

i=1

ziψi

)

−
(

N∑

i=1

ziψi

),( N∑

i=1

ziψi

)

= −x,Kx + 1
4

x,x

−
(

N∑

i=1

ziψi − 1
2

x

),( N∑

i=1

ziψi − 1
2

x

)

≤ −
(
λmin(K) − 1

4

)
‖x‖2

2 −
∥∥∥∥∥

N∑

i=1

ziψi − 1
2

x

∥∥∥∥∥

2

2

, (32)

where ‖.‖2 represents the l2 norm for a vector.
Since λmin(K) > 1

4 , V̇ is negative semi-definite, and there-
fore, x, zi are bounded. According to (28) and (31), as all
components of ẋ and żi are bounded, so are ẋ and żi. Moreover,
it can be obtained from (32) that

V̈ = −2x,Kẋ + 1
2

x,ẋ

− 2
( N∑

i=1

ziψi − 1
2

x
),( N∑

i=1

(żiψi + ziψ̇i) − 1
2

ẋ
)

,

the components of which are proved bounded. Therefore, so
is V̈ , implying that V̇ is uniformly continuous. Thus, one
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Fig. 1. Trajectories for the libration angle (left) and the angular velocity
(right) of a satellite under the FATII control.

Fig. 2. Uncertainty estimation (left) and the input signals (right) under
the FATII control.

obtains V̇ → 0, indicating

lim
t→∞ x = 0, lim

t→∞

N∑

i=1

diψi = lim
t→∞

N∑

i=1

(d̂i + β i)ψi, (33)

according to the Barbalat’s lemma [26, Lemma 4.3].

III. CASE STUDY

In this section, we test the validity of the constructed FATII
controllers applied on a chaotic system and a nonholonomic
system. Note that the robustness of the proposed controllers
are also demonstrated in the simulations based on the fact
that the main portions of systems are treated as time-varying
uncertainties.

A. Chaotic System
Dealing with chaotic motions of the libration angle of

a satellite is a significant research topic in the control of
spacecrafts

The satellite system can be modeled as [27]

Cφ̈ + cφ̇ + ζ(φ, t) = Mc, (34)

where ζ(φ, t) = 3ω2(B − A) sinφ cosφ + µmiIr−3(2 sinφ
sinωct + cosφ cosωct), and φ is the libration angle, Mc the
input, c, ωc, A, B, lm, I, r, i the constant parameters.

The motion equation (34) can be written in the state space
form as ẋ = f + gu where x = (φ, φ̇) is the state vector and
u = Mc the input. The gain matrix K in the controller (27) is
selected as diag(20, 10) and matrix G∗ as [1, 1] such that (A.2)
is satisfied (see the Appendix). The values of the constant
parameters in the model are selected the same as in [27]. Note
that ζ(φ, t) can be viewed as the system uncertainty which
does not appear in the controller.

The initial conditions of the system state φ and φ̇ are spec-
ified as π rad, π rad/s. The estimation error (e1(t), e2(t))) =
d − ∑N

i=1 diψi between the auxiliary and the actual systems
converge to zero, as illustrated in Fig. 2, where i = 1, 2. The
input signals are also shown by Fig. 2. Note that most works
in the literature suppressed the vibration of the libration angle
while the FATII method completely eliminates it.

Note that a sliding mode control based strategy employing
recursive least squares for nonlinear terms estimation [4], [5]
can also be used for this system, whereas the PE condition
is required to guarantee that d̂ converges to the actual uncer-
tainty. In comparison, the PE condition is dispensable for the

Fig. 3. Trajectories for the position (left) and the orientation (right) of a
rolling ball under the FATII control.

Fig. 4. Uncertainty estimation (left) and the input signals (right) under
the FATII control.

proposed controller. However, the controller in [4], [5] can
deal with the situation that time-delay is included in the output
signal.

B. Nonholonomic System
The control of nonholonomic systems is difficult because,

according to the Brockett’s condition [28], there exists no con-
tinuous state feedback asymptotically stabilizing such type of
systems at the equilibrium.

To demonstrate the feasibility of the proposed FATII con-
troller on nonholonomic systems, a rolling ball on a plane is
selected. The kinematics of the rolling system is described
by Montana’s equations [29], [30], as ẋ = G(x)u, where
x = (ub, vb, uo, vo,ψ) and u = (ωx,ωy,ωz) define respec-
tively the configuration and the angular velocity of the rolling
ball, and

G(x) =





0 R 0
−R 0 0

− sinψ/ cos vo − cosψ/ cos vo 0
− cosψ sinψ 0

− sinψ tan vo − cosψ tan vo −1




. (35)

In the simulation, the gain matrix K in the controller (13) is
selected as diag(30, 10, 6, 5, 5). The trajectories for the con-
figuration of the rolling ball, including its position ub(t), vb(t),
and its orientation uo(t), vo(t), ψ(t), converge to zero, as illus-
trated in Fig. 3. The initial conditions of the system state ub(t),
vb(t), uo(t), vo(t), and ψ(t) are specified as 1m, 1m, π rad,
π rad, and π rad. The estimation errors between the auxiliary
and the actual systems converge to zero, as illustrated in Fig. 4.
The initial values of the control parameters d̂i(t) are chosen
to be zero. The input signals are also shown by Fig. 4.

IV. CONCLUSION

The FATII control method has been proposed for a wide
class of nonlinear systems. The FATII method has the follow-
ing features. Firstly, it is model-free and thus, is applicable to
a wide range of systems. Secondly, the design of the FATII
controller is based on a robust adaptive approach (FAT) and
therefore can reject the effect of the system uncertainties or
external disturbances to the control system. Thirdly, unlike
other model-free methods such as the soft computing tech-
niques, the stability for systems under the FATII control has
been well established.
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The following issues need to be clarified in the future work.
Firstly, a unified way of selecting G∗ needs to be developed.
Secondly, we chose the Fourier functions to for estimating the
variation term d. However, the advantages and disadvantages
for this type of basis function are not analyzed and more candi-
dates need to be investigated. Thirdly, the delays in the output
signal need to be taken into account. Also, more systems
will be tested under the FATII based control and experimental
works will be conducted.

APPENDIX

It should be noted that there is no unique way for defin-
ing G∗ in (4). Depending on the estimation of control systems
by (3), it can be selected based on the following considera-
tions.

Firstly, for the estimated control system (3) whose tangent
linearization preserves controllability, one can design G∗ as
follows. The linearization of (3) at the equilibrium (xe, ue),
without the consideration of ξ̃ , gives

ẋ = Ax + Bu, (A.1)

where A = ∂ (̃f+G̃u)
∂x |xe,ue and B = ∂ (̃f+G̃u)

∂u |xe,ue . One selects
G∗ in (4) as a constant matrix (see Section III-A) such that

Re[λ(An×n − Bn×mG∗
m×nKn×n)] < 0, (A.2)

where K is positive definite. Thus, the closed loop system

ẋ = (A − BG∗K)x, (A.3)

formulated by the linearized system (A.1) and the state feed-
back portion u = −G∗Kx of the FATII controller, is stable.
The effect of the variation between the linearized system (A.1)
and the original system (1) can be eliminated by the rest part
of the FATII controller. Note that the stability of (A.3) also
indicates the controllability of a linear system

ẋ = Ax + BG∗u∗, (A.4)

where u∗ ∈ Rn is viewed as the input. It is because the selec-
tion of u∗ = −Kx renders (A.4) to the stable form (A.3).
As (A.4) is the linearized system of (5) at the equilibrium, the
controllability of (A.4) implies the local controllability of the
restructured system (5) at the equilibrium [31].

Secondly, for control systems whose tangent linearization
does not preserve controllability, such as the nonholonomic
systems (see Section III-B), one may select matrix G∗ as the
weighted pseudoinverse of G̃ as G∗ = (G̃,WG̃)−1G̃,W. The
constant matrix W is designed such that system (5) is control-
lable. The controllability proof of the restructured system (5)
for typical nonholonomic systems such as the unicycle system
and the spherical rolling robot can be found in [30]. An
alternative way is to select the nilpotent approximation for
nonholonomic systems as the nominal plant, and then design
G∗ through the process from (A.1) to (A.2).
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