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Abstract— Our work focuses on persistent area coverage
using a large number of agents. This is a valuable capability
for multi-agent and swarm-based systems. Specifically, we
strive to effectively disperse the agents throughout an area
of interest such that it is sufficiently and persistently covered
by the sensing sweeps of the agents. This capability can be
applied toward tasks such as surveillance, target tracking,
search and rescue, and exploration of unknown areas. Many
methods can be implemented as behaviors for the agents to
accomplish this. One strategy involves measuring area coverage
using a measure known as deployment entropy, which relies
on the area being divided into regions. Deployment entropy
expresses the coverage of the area as the uniformity of agents
per region across all regions. This strategy is useful due to
its low computational complexity, scalability, and potential
implementation on decentralized systems. Though previous
results are promising, they focus on instantaneous area coverage
and are not persistent. It is proposed in this paper that
combining the split region strategy with the implementation
of potential fields can retain the benefits of the split region
strategy while increasing the spread of agents and therefore the
total area that is persistently covered by the agents’ sensors.
This approach is implemented and demonstrated to be effective
through simulations of various numbers and densities of agents.
Ultimately, these studies showed that a greater spread of agents
and increased sensor coverage is obtained when compared
to previous results not using potential fields with deployment
entropy.

I. INTRODUCTION
Unmanned autonomous vehicles, especially those that can

operate for long periods of time, have significant potential for
surveillance tasks. Tasks such as persistent monitoring of an
area, target tracking, search and rescue, and even planetary
exploration could be advanced through the use of swarms
of these vehicles. To effectively accomplish surveillance of
an area of interest using a group of vehicles, it is vital that
available vehicles are spread across the region such that it
is covered by their sensing ranges. Thus, it is of value to
produce strategies and methodologies for autonomous agents
to effectively deploy across an area. Our work focuses on
the latter, persistent area coverage using a large number of
agents.

Because area coverage is a common aspect of tasks for
which robotic swarms are needed, there is significant ongo-
ing research into methods for a swarm of autonomous agents
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to sufficiently disperse throughout an area. Some recent
strategies that show promise are those that are biologically
inspired, as these lend themselves to be implemented as
behaviors on decentralized swarm systems [1] [2]. Yang et
al. created a dynamic algorithm that builds upon advances
in biologically inspired algorithms based on the foraging
patterns of bacteria using a Voronoi diagram-based strategy
of dividing up the area of interest [3]. Other recent strategies
include those that implement a leader-follower structure
within the movement of the multi-agent system [4] [5] [6].
Due to its importance in many multi-agent and swarm-based
tasks, numerous strategies and advances upon those strategies
will certainly continue to emerge in the field.

In this paper a method for improving upon an exist-
ing strategy for persistent area coverage using a swarm
of autonomous agents is explored. The existing strategy
by Zheng-Jie et al. [7] provides a good foundation for
further development due to the simplicity of the calculations
required, which extend to the potential for scalability and
ease of implementation as simple behaviors on autonomous
systems.

II. BACKGROUND

Our work focuses on persistent area coverage (coverage
over a length of time as opposed to one time point) using
a large number of agents. The survey by Galceran et al.
[8] focuses on instantaneous coverage path planning for
individual or small teams of agents. This is a key difference
between our work and typical coverage path planning goals
and methods. Yang et al. [9] and Liu et al. [10] also focus
on instantaneous area coverage instead of persistent area
coverage and are thus not as applicable to our problem. Gazi
et al. [11] does match our problem more closely, however
they assume that each agent “knows the exact position of
all the other individuals.” We are specifically only looking
at the more realistic case of an agent only knowing state
information about its nearest neighbors. To the best of our
knowledge the literature has not adequately addressed the
challenge of using a multitude of agents for persistent area
coverage with using only state information from the local
agents. This is what makes our work unique.

Additionally, in their paper [12] Li and Zhang established
a novel quantitative method, known as deployment entropy,
to evaluate the quality of coverage of sensors in an area.
Deployment entropy is a measure which “expresses the
uniformity of the deployment of sensors” among a number
of regions in an area. Sensing coverage has historically been
measured as the ratio of the area that can be sensed over the
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(a) Initial Stage                                              (b) After Global Level Redeployment                              (c) After Local Level Redeployment

Fig. 1. (left to right) Example two-level redeployment [7]

entire area of interest. Deployment entropy was proposed
as a measure to accomplish effective sensor deployment and
coverage that is less calculation-intensive. Using deployment
entropy requires dividing the area of interest into a number
of smaller regions, and is based on how balanced the amount
of sensors per region is across all of the regions in the
area of interest. In their paper [7] Zheng-jie and Wei adapt
deployment entropy as a method for distribution of micro
aerial vehicles (MAVs) for the purpose of surveillance of an
area. Deployment entropy is described by Equation 1:

H = −
n∑

i=1

pi ln pi (1)

where
pi =

ratioi∑n
k=1 ratiok

(2)

ratioi =
Ni

Si
(3)

Ntotal =

n∑
i=1

Ni (4)

Stotal =

n∑
i=1

Si (5)

Fig. 2. (LEFT) Model of repulsive potential field. (RIGHT) Model of
attractive potential field [13]

Though the researchers present a scenario utilizing a
swarm of MAVs, this strategy can be utilized for any group
of autonomous agents. For the use case of deployment of

a swarm of autonomous agents, n is the number of regions
that the area has been divided into, Ni is the number of
agents in the ith region, Si is the area of the ith region,
ratioi is the ratio of the amount of agents in the ith region
to the area of the ith region, and Stotal is the total area of
the overall area of interest. The value of deployment entropy
for a given case reaches its maximum when the value of the
ratio for each region is equal to Ntotal/Stotal. Thus, maximizing
the deployment entropy will maximize the uniformity of the
distribution of agents among the regions.

Zheng-jie and Wei [7] propose a two-level redeployment
method and establish a number of rules for implementation
using MAVs toward the goal of achieving maximum de-
ployment entropy. The scenario for implementation is that
a number of MAVs have been deployed into the area of
interest, either into one region of the area or randomly
dispersed throughout the area. To create the regions for the
implementation of deployment entropy, the area is partitioned
into a grid of relatively large cells. The regions are then
iterated through as agents are redeployed one at time to
neighboring regions where the ratio of agents to area is
lower. Their proposed strategy is to deploy the agents into
the area and then begin redeploying them one at a time.
After the redeployment of a MAV, the deployment entropy is
recalculated. This iteration repeats until a desired deployment
entropy is reached. The regions are then divided into a
number of sub-regions, and the redeployment is repeated
on a local level within the larger regions. This is done to
increase the sensor coverage of the area of interest. They
provide pseudocode for their implementation in their paper,
shown in Algorithm 1.

This implementation is based on a number of rules to
govern the movements of the MAVs during redeployment.
The first is the previously mentioned grid-based partitioning
method for the division of the area into regions, which
simplifies planning and area computation. The second rule
is that every region or sub-region can only interact with its
neighboring regions or sub-regions. The third is that MAVs
can only relocate themselves from one region or sub-region
to one with a lower ratio. The fourth is that for a MAV
to move between two regions or sub-regions, the difference
between their numbers of MAVs must be greater than one,
which ensures the deployment reaches a final stable state.
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The final rule is that only one MAV can be selected to move
for each region on each iteration, and the MAV that moves is
the one which is the shortest direct distance away from the
center of the region which is being moved into. See Figure
1 for an example two-level redeployment scenario. In this
example, the thick black lines represent the divisions for the
larger regions, the dotted blue lines represent the divisions
for the sub-regions, and the blue circles represent the agents.

The characteristics of deployment entropy as a strategy
for a surveillance application and the rules that Zheng-jie
and Wei introduce for their implementation make it useful
for applications where autonomous agents need to distribute
themselves across an area while using decentralized control.
The rule which provides the constraint that regions and sub-
regions only interact with their neighbors means that only
short-range communication is required. Agents only need
to communicate with those in their own region and those
in adjacent ones to coordinate moves. Agents only need to
know their own location, and do not need to know the overall
global state of all agents. Decentralized control is desirable
to provide greater security compared to centralized control
for multi-agent systems due to greater fault tolerance, as
discussed by Jiménez et al. [14]. The system can continue
to function even if one agent fails.

III. METHODOLOGY

This section discusses how the deployment entropy strat-
egy of agent distribution was implemented in simulation and
how potential fields were implemented to increase the spread
of agents. A script was created that can generate a simulated
deployment given user-input quantities. The user can input
the number of agents in the scenario, the dimensions of
the area under study, the numbers of rows and columns of
regions, and in which region the agents enter the area of
interest at the beginning of the simulation. Following the
method laid out in the pseudocode in Figure 1, the user
sets goal deployment entropy values for the global and local
redeployment phases and the simulation iterates through all
regions redeploying agents to neighboring regions and sub-
regions until these goal values are reached. When an agent
moves from one region to another, it chooses a random
location within that region.

The simulation results obtained using the deployment
entropy method with a two-level redeployment scheme were
promising, considering their previously noted potential for
use with decentralized control and scalability due to the
simple calculations required. However, one undesirable trend
with the method described emerged as simulations were
run. Due to the fact that that the agents that moved to
neighboring regions were the ones closest to the centers of
those neighboring regions, the agents that remained behind
were often clustered in a corner far from their neighbors,
especially in cases where there were large numbers of agents.
The implementation of potential fields [13] was considered
as a possible solution to this issue.

We initially considered implementation of a repulsive
field between agents after the two-level redeployment would

Algorithm 1: Pseudocode for implementation of
deployment entropy area coverage methodology [7]

1 Partition the interested field into n grids, N MAVs
are deployed in the interested field;

2 for i=1 to n do
3 compute the MAVs number in each grid, Ni;
4 compute the ratio of each grid;
5 end
6 Compute the theoretical deployment entropy;
7 Compute the current deployment entropy;
8 while the current deployment entropy is less than the

theoretical deployment entropy do
9 for i=1 to n do

10 if the ratio difference between ith grid and its
neighbour grids exceed the ratio difference
threshold then

11 for j=1 to Ni do
12 compute the distance between MAVs

in the ith grid and each neighbour
grid centre;

13 end
14 Find the shortest distance and record the

MAV ID=j;
15 Move the jth MAV to the neighbour grid;
16 end
17 Re-compute number of MAVs in each grid,

Ni;
18 Re-compute deployment entropy after node

movements;
19 end
20 end
21 Partition each sub-grid into m sub-grids;
22 for i = 1 to n do
23 for j = 1 to m do
24 Repeat compute process steps 9-19 for each

sub-grid
25 end
26 end

produce a significant improvement in the spread of the
agents. A repulsive potential field can be modeled as shown
in Figure 2. In that diagram, the magenta circle represents
the object generating the repulsive field, and the magnitude
of the repulsive force is proportional to the distance from the
object. Outside of the field’s range (shown in the space where
the black arrows become black dots), the magnitude of the
repulsive force is zero. The mathematics for implementation
of a repulsive potential field can be seen below:

x =

 −sign(cosθ) · ∞ : d < r
−β(s+ r − d)cos(θ) : r ≤ d ≤ s+ r
0 : d > s+ r

(6)

y =

 −sign(sinθ) · ∞ : d < r
−β(s+ r − d)sin(θ) : r ≤ d ≤ s+ r
0 : d > s+ r

(7)
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Fig. 3. (TOP - left to right) Results of simulated 50 agent redeployment. (BOTTOM - left to right) Results of simulated 50 agent redeployment with
visualized sensor coverage areas.

In these equations, d is the distance between the agent and
the center of the obstacle generating the field, r is the radius
of the obstacle, s is the radius of the potential field, Θ is the
angle between the agent and the obstacle found using the
atan2 function, and β is the field strength.

However, because the agents were often grouped in the
corners of regions following the local redeployment stage,
the agents repelling each other often just pushed them
into the boundaries of their sub-region without significantly
increasing their spread. To produce a better spread, and
therefore increased sensor coverage, over the sub-region, the
agents would have to be repelled from somewhere closer
to the center of the sub-region. From this came the idea
of first having an attractive force to move agents toward
the center, followed by a repulsive force away from each
other. An attractive potential field can be modeled as shown
in Figure 2. In that diagram, the blue circle represents the
object generating the attractive field, and the magnitude of
the attractive force is inversely proportional to the distance
from the object. The mathematics for implementation of an
attractive potential field can be seen below:

x =

 0 : d < r
α(d− r)cos(θ) : r ≤ d ≤ s+ r
αs(cos(θ)) : d > s+ r

(8)

y =

 0 : d < r
α(d− r)sin(θ) : r ≤ d ≤ s+ r
αs(sin(θ)) : d > s+ r

(9)

In these equations, d is the distance between the agent and
the center of the obstacle generating the field, r is the radius
of the obstacle, s is the radius of the potential field, Θ is the
angle between the agent and the obstacle found using the
atan2 function, and α is the field strength.

The potential field math was implemented within the re-
deployment simulation to begin after the desired deployment
entropy value is reached following the local redeployment.
In the current form of the simulation, the math presented
above (Eqns. (6)-(9)) is used to compute a position change
in the agents, first toward the center of their sub-regions
assuming that the attractive field was being generated by a
point at the center of the sub-region, and then away from
each other. If the potential field forces would push an agent
outside of its sub-region, it simply stops at the boundary. The
field strengths were manually tuned based on the size of the
area in simulation (which was based on a testing area in the
real world).

IV. RESULTS

A 50-agent deployment was simulated utilizing the de-
ployment entropy strategy with two-level redeployment and
potential fields, the results of which can be seen in Figure 3.

The red dots are the agents in the scenario, the blue solid
lines designate the larger regions, and the dotted blue lines
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Fig. 4. (TOP - left to right) Results of simulated 100 agent redeployment. (BOTTOM - left to right) Results of simulated 100 agent redeployment with
visualized sensor coverage areas.

designate the sub-regions. After the global redeployment
into the divided regions and the local redeployment into the
sub-regions, it can be seen that some of the agents’ final
positions are clustered together, often in corners. After the
application of the attractive field toward the center followed
by the repulsive fields between agents, it can be seen that
there is a much more even spread of agents. If you envision
the agents as airborne autonomous systems surveying the
ground, the area that the sensor can view on the ground
could be a circular area. Figure 3 is a representation of
what this 50-agent redeployment scenario looks like with
the sensor coverage areas of the agents represented by blue
circles around them. In this figure, it can be seen that after
the local redeployment there is still overlap between agents’
sensor areas, while after the potential field application there
is less overlap and greater sensor coverage of the area of
interest overall.

In situations with large numbers of agents compared to
the number of total sub-regions, the clustering-into-corners
effect during redeployment can be even more significant. See
Figures 4 for another simulation with 100 agents with the
same area and region divisions as the 50-agent simulation.
It can be seen that the application of potential fields yields
a greater agent spread within sub-regions and greater sensor
coverage.

A. Comparison

Now we compare our method of using the potential fields
to that of using the traditional redeployment method (i.e.
without potential fields). To do this we look at the mean

distance of the closest six agents to each agent. The closest
six agents metric is chosen because that is the number
of agents surrounding each agent if they formed a two
dimensional (2D) crystalline structure where all agents are
of equal distance from one another. An example of this can
be seen in Figure 5. Please note that all adjacent agents
are the same distance from each other. The angle formed
between any three adjacent agents is 60o. This deployment
is the optimal deployment for even area coverage.

We define the theoretical minimum but equal distance
between all agents as Lmin. For ease of calculation we
assume that we have a square field (operating space) and
that you can not have a fraction of an agent.

Lmin =
L⌈

N
1
2 − 1

⌉ (10)

where L is the length of one side of the square field and N
is the number of agents on one side of the crystalline box.
The −1 is added because we assume that there can be an
agent at the edges of the square field. N is defined as:

N =

(
M

2

) 1
2

(11)

where M is the number of agents.
For the first group of simulations, whose data is repre-

sented in Figure 6 and Tables I, II, III, IV, and V, a repulsive
potential field strength (β) of 0.5 is used in equations
(6) and (7). The mean of the distances between agents is
roughly equivalent before and after using potential fields.
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Fig. 5. Example of the optimal (most uniform) crystalline structure. All
adjacent agents are equal distance from one another. The angle formed
between any three adjacent agents is 60o. In this case Agent 0 is the agent
of interest. Note that d01 = d02 = d03 = · · · = d56.

The standard deviation is lower after field implementation
for lower numbers of agents, but increases at 500 and 1000
agents. The latter increase at 500 in Figure 6 will be referred
to ask “the knee” from this point forward. The presence of
the knee indicates that the agent spread is less uniform at
this field strength for higher numbers of agents. This effect
is due to the increasing density of the repulsive field strength
creating more “energy” in the system. If we decrease the β
energy from the potential fields, to decrease the density, we
will see the knee move to the right. For the second group
of simulations, whose data is represented in Figure 7 and
Tables VI, VII, VIII, IX, and X, a repulsive potential field
strength (β) of 0.1 is used. The knee is not not present up to
1000 agents. The standard deviation of mean distances after
potential field implementation remains lower than before for
all five agent quantities simulated. These results indicate that
in order to obtain the most uniform spread, repulsive field
strength must be tuned with respect to the number of agents
being deployed.

B. Discussion

It is noted that the mean of the distances between adjacent
agents is similar to both the potential fields method and the
non-potential fields method. The standard deviation of the
mean distance between adjacent agents remains considerably
lower for the potential fields method. This means that we
can use a more uniformly distributed set of agents using the
potential fields method vs. traditional methods. We expect
that with the increase of the number of agents that the
standard deviation of the mean distance will decrease due
to the decreasing mean distance. An interesting effect of
the potential fields method can be seen in the plot of the
standard deviation of the mean distance between agents in
Figure 7. This plot shows that you will need approximately

TABLE I
STATISTICS FOR REDEPLOYMENT OF 50 AGENTS BEFORE AND AFTER

IMPLEMENTATION OF POTENTIAL FIELDS. NOTE: REPULSIVE FIELD

STRENGTH FOR THIS SIMULATION IS 0.5.

50 Agents Before Fields After Fields
Mean of Mean Distances 2.685 2.669
Std. Dev. of Mean Distances 0.531 0.321
Std. Dev. of All Std. Dev. 0.432 0.305
Mean of All Std. Dev. 0.942 0.708

TABLE II
STATISTICS FOR REDEPLOYMENT OF 100 AGENTS BEFORE AND AFTER

IMPLEMENTATION OF POTENTIAL FIELDS. NOTE: REPULSIVE FIELD

STRENGTH FOR THIS SIMULATION IS 0.5.

100 Agents Before Fields After Fields
Mean of Mean Distances 1.752 1.752
Std. Dev. of Mean Distances 0.381 0.236
Std. Dev. of All Std. Dev. 0.269 0.140
Mean of All Std. Dev. 0.646 0.536

180 agents using the non-potential fields method to get the
same standard deviation of mean distances between agents as
you get with 50 agents using the potential fields method. This
shows that the potential fields method out-performs the non-
potential fields method in creating a uniformly distributed
set of agents.

V. CONCLUSION

In this paper the problem of agent congestion when utiliz-
ing the deployment entropy-based solution for area coverage
surveillance using a swarm of autonomous agents was con-
sidered. The concept of deployment entropy originated as a
method for coverage analysis of wireless sensor networks and
was later proposed as a method for area coverage of a swarm
of micro aerial vehicles. Deployment entropy is useful for its
scalability and potential for implementation on systems of
agents using decentralized control. The implementation of a
simulation of the deployment entropy swarm area coverage

TABLE III
STATISTICS FOR REDEPLOYMENT OF 200 AGENTS BEFORE AND AFTER

IMPLEMENTATION OF POTENTIAL FIELD. NOTE: REPULSIVE FIELD

STRENGTH FOR THIS SIMULATION IS 0.5.

200 Agents Before Fields After Fields
Mean of Mean Distances 1.053 1.199
Std. Dev. of Mean Distances 0.278 0.180
Std. Dev. of All Std. Dev. 0.156 0.106
Mean of All Std. Dev. 0.397 0.329

TABLE IV
STATISTICS FOR REDEPLOYMENT OF 500 AGENTS BEFORE AND AFTER

IMPLEMENTATION OF POTENTIAL FIELDS. NOTE: REPULSIVE FIELD

STRENGTH FOR THIS SIMULATION IS 0.5.

500 Agents Before Fields After Fields
Mean of Mean Distances 0.546 0.569
Std. Dev. of Mean Distances 0.236 0.366
Std. Dev. of All Std. Dev. 0.087 0.148
Mean of All Std. Dev. 0.182 0.208
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Fig. 6. Statistical plots of (RIGHT) the mean distance between neighboring agents. (MIDDLE) the standard deviation of the mean of the distance between
neighboring agents. (RIGHT) the standard deviation of the standard deviation mean standard deviation between neighboring agents. Note: These were taken
for the potential fields case and the non-potential fields case for the closest six agents. The repulsive field strength (β) for all simulations is 0.5.

Fig. 7. Statistical plots of (RIGHT) the mean distance between neighboring agents. (MIDDLE) the standard deviation of the mean of the distance between
neighboring agents. (RIGHT) the standard deviation of the standard deviation mean standard deviation between neighboring agents. Note: These were
taken for the potential fields case and the non-potential fields case for the closest six agents. These plots differ from those in Figure 6 as field strength as
decreased for the simulations with larger numbers of agents. The repulsive field strength (β) for all simulations is 0.1.

TABLE V
STATISTICS FOR REDEPLOYMENT OF 1000 AGENTS BEFORE AND AFTER

IMPLEMENTATION OF POTENTIAL FIELDS. NOTE: REPULSIVE FIELD

STRENGTH FOR THIS SIMULATION IS 0.5.

1000 Agents Before Fields After Fields
Mean of Mean Distances 0.345 0.378
Std. Dev. of Mean Distances 0.167 0.292
Std. Dev. of All Std. Dev. 0.055 0.105
Mean of All Std. Dev. 0.109 0.120

TABLE VI
STATISTICS FOR REDEPLOYMENT OF 50 AGENTS BEFORE AND AFTER

IMPLEMENTATION OF POTENTIAL FIELDS. NOTE: REPULSIVE FIELD

STRENGTH FOR THIS SIMULATION IS 0.1.

50 Agents Before Fields After Fields
Mean of Mean Distances 2.644 2.563
Std. Dev. of Mean Distances 0.582 0.373
Std. Dev. of All Std. Dev. 0.404 0.398
Mean of All Std. Dev. 0.904 0.741

TABLE VII
STATISTICS FOR REDEPLOYMENT OF 100 AGENTS BEFORE AND AFTER

IMPLEMENTATION OF POTENTIAL FIELDS. NOTE: REPULSIVE FIELD

STRENGTH FOR THIS SIMULATION IS 0.1.

100 Agents Before Fields After Fields
Mean of Mean Distances 1.748 1.745
Std. Dev. of Mean Distances 0.434 0.166
Std. Dev. of All Std. Dev. 0.356 0.132
Mean of All Std. Dev. 0.664 0.839

TABLE VIII
STATISTICS FOR REDEPLOYMENT OF 200 AGENTS BEFORE AND AFTER

IMPLEMENTATION OF POTENTIAL FIELDS. NOTE: REPULSIVE FIELD

STRENGTH FOR THIS SIMULATION IS 0.1.

200 Agents Before Fields After Fields
Mean of Mean Distances 1.021 0.901
Std. Dev. of Mean Distances 0.339 0.166
Std. Dev. of All Std. Dev. 0.148 0.136
Mean of All Std. Dev. 0.389 0.551

TABLE IX
STATISTICS FOR REDEPLOYMENT OF 500 AGENTS BEFORE AND AFTER

IMPLEMENTATION OF POTENTIAL FIELDS. NOTE: REPULSIVE FIELD

STRENGTH FOR THIS SIMULATION IS 0.1.

500 Agents Before Fields After Fields
Mean of Mean Distances 0.531 0.556
Std. Dev. of Mean Distances 0.231 0.133
Std. Dev. of All Std. Dev. 0.083 0.057
Mean of All Std. Dev. 0.174 0.165

TABLE X
STATISTICS FOR REDEPLOYMENT OF 1000 AGENTS BEFORE AND AFTER

IMPLEMENTATION OF POTENTIAL FIELDS. NOTE: REPULSIVE FIELD

STRENGTH FOR THIS SIMULATION IS 0.1.

1000 Agents Before Fields After Fields
Mean of Mean Distances 0.332 0.473
Std. Dev. of Mean Distances 0.151 0.121
Std. Dev. of All Std. Dev. 0.050 0.054
Mean of All Std. Dev. 0.106 0.146
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strategy was discussed, followed by the introduction of
the problem of agent congestion following the two-level
redeployment scheme proposed by Zheng-Jie and Wei [7].
Potential fields were proposed as a solution to this conges-
tion. It was shown that the implementation of two potential
field phases, an attraction toward the center of sub-regions
followed by a repulsion between agents, can increase spread
of agents within sub-regions and overall coverage of the area
of interest. Statistical analysis concluded that implementation
of potential fields increased mean distance between agents
and lowered the standard deviation, indicating that there is
a greater, more uniform spread, resulting in greater area
coverage and more efficient usage of agent resources. Finally,
it was shown that the potential fields method out-performs
the non-potential fields method in creating a uniformly
distributed set of agents.

VI. FUTURE WORK

In this work we focused on persistent area coverage using
a large number of agents. In this vein we showed that
a greater spread of agents and increased sensor coverage
is obtained when compared to previous results not using
potential fields with deployment entropy. Additionally, we
found that there may be a point (number of agents) in which
our method becomes less efficient than the baseline method.
This is especially interesting and will require additional
mathematical modeling to determine why we obtained this
behavior.

There are a number of possible paths to follow to take
this research forward. In the simulations presented in this
paper, the field strengths of the potential fields were manually
adjusted, but it would be desirable to create a methodology
for automatically deciding these characteristics. This method
could potentially factor in the number of agents, the size
of the sub-regions, and/or the size of the sensing area of
the agents. Such a method would be of particular interest if
the agents have different sensing areas, either due to having
different sensors or by completing a surveillance mission
at different altitudes. As the statistical results showed that
repulsive field strength has a relationship with the degree and
uniformity of the spread of agents as the number of agents
increases, a mathematical relationship could be developed in
order to determine what potential field strength results in the
optimal coverage. Additional research could be conducted
into fully exploring the effect that varying field strength
values have upon the area coverage. Incorporating a third
dimension into the algorithm would introduce additional
nuances and challenges to this method. A valuable challenge
to pursue would be implementing the deployment entropy
area coverage strategy in the real-world in a truly decen-
tralized way. This can be done on our lighter-than-air aerial
agents (LTA3) from our previous work [15]–[19]. This would
involve implementing it as a behavior on autonomous mobile
robots who only have access to their own location and local
information from neighboring agents, and implementing a
method of the agents knowing when redeployment efforts

have ended and to begin potential field use to increase
spread.
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[14] A. C. Jiménez, V. Garcı́a-Dı́az, and S. Bolaños, “A decentralized

framework for multi-agent robotic systems,” Sensors, vol. 18, no. 2,
p. 417, 2018.

[15] T. Schuler, D. Lofaro, L. McGuire, A. Schroer, T. Lin, and D. Sofge,
“A study of robotic swarms and emergent behaviors using 25+ real-
world lighter-than-air autonomous agents (lta3),” in 2019 3rd Inter-
national Symposium on Swarm Behavior and Bio-Inspired Robotics
(SWARM), 2019.

[16] J. Gibson, T. Schuler, D. Sofge, and D. Lofaro, “Swarm and multi-
agent time-based path planning for lta3 systems,” in World Scientific:
Unmanned Systems, 2020.

[17] D. Lofaro and D. Sofge, “Multimodal control of lighter-than-air
agents,” in Proceedings of the 20th ACM International Conference
on Multimodal Interaction, ICMI 2018, ACM, 2018.

[18] D. Srivastava, D. Lofaro, T. Schuler, and D. Sofge, “Gesture-based
interface for multi-agent and swarm formation control,” in 2019
3rd International Symposium on Swarm Behavior and Bio-Inspired
Robotics (SWARM), 2019.

[19] J. Gibson, T. Schuler, D. Sofge, and D. Lofaro, “Multi-agent time-
based a* path planning on lighter-than-air autonomous agents,” in
IEEE International Conference on Cybernetics and Intelligent Systems,
and Robotics, Automation and Mechatronics (CIS-RAM), 2019.

486


